The deep structure of the Australian continent from surface wave tomography

Frederik J. Simons, Alet Zielhuis, Rob D. Van Der Hilst

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

We present a new model of 3-D variations of shear wave speed in the Australian upper mantle, obtained from the dispersion of fundamental and higher-mode surface waves. We used nearly 1600 Rayleigh wave data from the portable arrays of the SKIPPY project and from permanent stations (from AGSO, IRIS and GEOSCOPE). AGSO data have not been used before and provide better data coverage of the Archean cratons in western Australia. Compared to previous studies we improved the vertical parameterization, the weighting scheme that accounts for variations in data quality and reduced the influence of epicenter mislocation on velocity structure. The dense sampling by seismic waves provides for unprecedented resolution of continental structure, but the wave speed beneath westernmost Australia is not well constrained. Global compilations of geological and seismological data (using regionalizations based on tectonic behavior or crustal age) suggest a correlation between crustal age and the thickness and composition of the continental lithosphere. However, the age and the tectonic history of crustal elements vary on wavelengths much smaller than have been resolved with global seismological studies. Using our regional upper mantle model we investigate how the seismic signature of tectonic units changes with increasing depth. At large wavelengths, and to a depth of about 200 km, the inferred velocity anomalies corroborate the global pattern and display a progression of wave speed with crustal age: slow wave propagation prevails beneath the Paleozoic fold belts in eastern Australia and wave speeds increase westward across the Proterozoic and reach a maximum in the Archean cratons. The high wave speeds associated with Precambrian shields extend beyond the Tasman Line, which marks the eastern limit of Proterozoic outcrop. This suggests that parts of the Paleozoic fold belts are underlain by Proterozoic lithosphere. We also infer that the North Australia craton extends off-shore into Papua New Guinea and beneath the Indian Ocean. For depths in excess of 200 km a regionalization with smaller units reveals that some tectonic subregions of Proterozoic age are marked by pronounced velocity highs to depths exceeding 300 km, but others do not and, surprisingly, the Archean units do not seem to be marked by such a thick high wave speed structure either. The Precambrian cratons that lack a thick high wave speed "keel" are located near passive margins, suggesting that convective processes associated with continental break-up may have destroyed a once present tectosphere. Our study suggests that deep lithospheric structure varies as much within domains of similar crustal age as between units of different ages, which hampers attempts to find a unifying relationship between seismic signature and lithospheric age.

Original languageEnglish (US)
Pages (from-to)17-43
Number of pages27
JournalDevelopments in Geotectonics
Volume24
Issue numberC
DOIs
StatePublished - 1999
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geology

Keywords

  • Australia
  • Broadband data
  • Continental lithosphere
  • Rayleigh wave
  • SKIPPY project
  • Waveform tomography

Fingerprint

Dive into the research topics of 'The deep structure of the Australian continent from surface wave tomography'. Together they form a unique fingerprint.

Cite this