The darkside multiton detector for the direct dark matter search

C. E. Aalseth, P. Agnes, A. Alton, K. Arisaka, D. M. Asner, H. O. Back, B. Baldin, K. Biery, G. Bonfini, M. Bossa, A. Brigatti, J. Brodsky, F. Budano, L. Cadonati, M. Cadoni, F. Calaprice, N. Canci, A. Candela, H. Cao, M. CarielloP. Cavalcante, A. Chepurnov, A. G. Cocco, C. Condon, L. Crippa, D. D'Angelo, M. D'Incecco, S. Davini, M. De Deo, A. Derbin, A. Devoto, F. Di Eusanio, E. Edkins, A. Empl, A. Fan, G. Fiorillo, K. Fomenko, G. Forster, M. Foxe, D. Franco, F. Gabriele, C. Galbiati, A. Goretti, L. Grandi, M. Gromov, M. Y. Guan, Y. Guardincerri, B. Hackett, K. Herner, A. Hime, P. Humble, E. Hungerford, Al Ianni, An Ianni, D. E. Jaffe, C. Jollet, K. Keeter, C. Kendziora, S. Kidner, V. Kobychev, G. Koh, D. Korablev, G. Korga, A. Kurlej, P. X. Li, M. Lissia, P. Lombardi, L. Ludhova, S. Luitz, G. Lukyachenko, Y. Q. Ma, I. Machulin, A. Mandarano, S. M. Mari, J. Maricic, L. Marini, D. Markov, J. Martoff, A. Meregaglia, E. Meroni, P. D. Meyers, T. Miletic, R. Milincic, M. Montuschi, M. E. Monzani, P. Mosteiro, B. Mount, V. Muratova, P. Musico, D. Montanari, A. Nelson, S. Odrowski, A. Odrzywolek, J. L. Orrell, M. Orsini, F. Ortica, L. Pagani, M. Pallavicini, E. Pantic, S. Parmeggiano, B. Parsells, K. Pelczar, N. Pelliccia, S. Perasso, L. Perasso, A. Pocar, S. Pordes, D. Pugachev, H. Qian, K. Randle, G. Ranucci, A. Razeto, K. Recine, B. Reinhold, A. Renshaw, A. Romani, N. Rossi, B. Rossi, S. D. Rountree, D. Sablone, P. Saggese, R. Saldanha, W. Sands, S. Sangiorgio, E. Segreto, D. Semenov, E. Shields, M. Skorokhvatov, M. Smallcomb, O. Smirnov, A. Sotnikov, Y. Suvurov, R. Tartaglia, J. Tatarowicz, G. Testera, A. Tonazzo, E. Unzhakov, R. B. Vogelaar, M. Wada, S. E. Walker, H. Wang, Y. Wang, A. W. Watson, S. Westerdale, R. Williams, M. Wojcik, J. Xu, C. G. Yang, J. Yoo, B. Yu, S. Zavatarelli, W. L. Zhong, G. Zuzel

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Although the existence of dark matter is supported by many evidences, based on astrophysical measurements, its nature is still completely unknown. One major candidate is represented by weakly interacting massive particles (WIMPs), which could in principle be detected through their collisions with ordinary nuclei in a sensitive target, producing observable low-energy (<100 keV) nuclear recoils. The DarkSide program aims at the WIPMs detection using a liquid argon time projection chamber (LAr-TPC). In this paper we quickly review the DarkSide program focusing in particular on the next generation experiment DarkSide-G2, a 3.6-ton LAr-TPC. The different detector components are described as well as the improvements needed to scale the detector from DarkSide-50 (50 kg LAr-TPC) up to DarkSide-G2. Finally, the preliminary results on background suppression and expected sensitivity are presented.

Original languageEnglish (US)
Article number541362
JournalAdvances in High Energy Physics
Volume2015
DOIs
StatePublished - Jan 20 2015

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'The darkside multiton detector for the direct dark matter search'. Together they form a unique fingerprint.

Cite this