Abstract
We consider the continuum limit for models of solids that arise in density functional theory and the QM-continuum approximation of such models. Two different versions of QM-continuum approximation are proposed, depending on the level at which the Cauchy-Born rule is used, one at the level of electron density and one at the level of energy. Consistency at the interface between the smooth and the non-smooth regions is analyzed. We show that if the Cauchy-Born rule is used at the level of electron density, then the resulting QM-continuum model is free of the so-called "ghost force" at the interface. We also present dynamic models that bridge naturally the Car-Parrinello method and the QM-continuum approximation.
Original language | English (US) |
---|---|
Pages (from-to) | 679-696 |
Number of pages | 18 |
Journal | Communications in Mathematical Sciences |
Volume | 5 |
Issue number | 3 |
DOIs | |
State | Published - 2007 |
All Science Journal Classification (ASJC) codes
- General Mathematics
- Applied Mathematics
Keywords
- Continuum limit
- Density functional theory
- QM-continuum approximation