The combustion properties of 2,6,10-trimethyl dodecane and a chemical functional group analysis

Sang Hee Won, Stephen Dooley, Peter S. Veloo, Haowei Wang, Matthew A. Oehlschlaeger, Frederick L. Dryer, Yiguang Ju

Research output: Contribution to journalArticlepeer-review

116 Scopus citations


The global combustion characteristics of 2,6,10-trimethyl dodecane (trimethyl dodecane), a synthetic fuel candidate species, have been experimentally investigated by measuring extinction limits for strained laminar diffusion flames at 1atm and reflected shock ignition delays at 20atm. The Derived Cetane Number (DCN) of trimethyl dodecane, (59.1) and Hydrogen/Carbon (H/C) ratio (2.133) are very close to the DCN and H/C ratio of a previously studied synthetic aviation fuel, S-8 POSF 4734 (S-8) and its surrogate mixture composed of n-dodecane/iso-octane (58.9 and 2.19, respectively). Identical high temperature global kinetic reactivities are observed in all experiments involving the aforementioned compounds. However, at temperatures below ~870K, the S-8 surrogate mixture has ignition delay times approximately a factor of two faster. A chemical functional group analysis identifies that the methylene (CH2) to methyl (CH3) ratio globally correlates the low temperature alkylperoxy radical reactivity for these large paraffinic fuels. This result is further supported experimentally, by comparing observations using a surrogate fuel mixture of n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethyl nonane (iso-cetane) that shares the same methylene-to-methyl ratio as trimethyl dodecane, in addition to the same DCN and H/C ratio. Measurements of both diffusion flame extinction and reflected shock ignition delays show that the n-cetane/iso-cetane model fuel has very similar combustion behavior to trimethyl dodecane at all conditions studied. A kinetic modeling analysis on the model fuel suggests the formation of alkylhydroperoxy radicals (QOOH) to be strongly influenced by the absence or presence of the methyl and methylene functional groups in the fuel chemical structure. The experimental observations and analyses suggest that paraffinic based fuels having high DCN values may be more appropriately emulated by further including the CH2 to CH3 ratio as an additional combustion property target, as DCN alone fails to fully distinguish the relative reaction characteristics of low temperature kinetic phenomena.

Original languageEnglish (US)
Pages (from-to)826-834
Number of pages9
JournalCombustion and Flame
Issue number3
StatePublished - Mar 2014

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Chemical Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology
  • General Physics and Astronomy


  • Alternative diesel fuel
  • Combustion properties
  • Farnesane
  • Surrogate fuel
  • Trimethyl dodecane


Dive into the research topics of 'The combustion properties of 2,6,10-trimethyl dodecane and a chemical functional group analysis'. Together they form a unique fingerprint.

Cite this