The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample

Shadab Alam, Metin Ata, Stephen Bailey, Florian Beutler, Dmitry Bizyaev, Jonathan A. Blazek, Adam S. Bolton, Joel R. Brownstein, Angela Burden, Chia Hsun Chuang, Johan Comparat, Antonio J. Cuesta, Kyle S. Dawson, Daniel J. Eisenstein, Stephanie Escoffier, Hector Gil-Maŕin, Jan Niklas Grieb, Nick Hand, Shirley Ho, Karen KinemuchiDavid Kirkby, Francisco Kitaura, Elena Malanushenko, Viktor Malanushenko, Claudia Maraston, Cameron K. McBride, Robert C. Nichol, Matthew D. Olmstead, Daniel Oravetz, Nikhil Padmanabhan, Nathalie Palanque-Delabrouille, Kaike Pan, Marcos Pellejero-Ibanez, Will J. Percival, Patrick Petitjean, Francisco Prada, Adrian M. Price-Whelan, Beth A. Reid, Sergio A. Rodŕiguez-Torres, Natalie A. Roe, Ashley J. Ross, Nicholas P. Ross, Graziano Rossi, Jose Alberto Rubiño-Martin, Shun Saito, Salvador Salazar-Albornoz, Lado Samushia, Ariel G. Śanchez, Siddharth Satpathy, David J. Schlegel, Donald P. Schneider, Claudia G. Sćoccola, Hee Jong Seo, Erin S. Sheldon, Audrey Simmons, Anze Slosar, Michael A. Strauss, Molly E.C. Swanson, Daniel Thomas, Jeremy L. Tinker, Rita Tojeiro, Mariana Vargas Magaña, Jose Alberto Vazquez, Licia Verde, David A. Wake, Yuting Wang, David H. Weinberg, Martin White, W. Michael Wood-Vasey, Christophe Ỳeche, Idit Zehavi, Zhongxu Zhai, Gong Bo Zhao

Research output: Contribution to journalArticlepeer-review

2150 Scopus citations

Abstract

We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg2 and volume of 18.7 Gpc3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51 and 0.61. We measure the angular diameter distance DM and Hubble parameterHfrom the baryon acoustic oscillation (BAO) method, in combinationwith a cosmic microwave background prior on the sound horizon scale, after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DMH from the Alcock-Paczynski (AP) effect and the growth of structure, quantified by fσ8(z), from redshift-space distortions (RSD). We combine individual measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one method; in particular, the AP measurement from sub-BAO scales sharpens constraints from post-reconstruction BAOs by breaking degeneracy between DM and H. Combined with Planck 2016 cosmic microwave background measurements, our distance scale measurements simultaneously imply curvature ωK = 0.0003 ± 0.0026 and a dark energy equation-of-state parameter ω =-1.01 ± 0.06, in strong affirmation of the spatially flat cold dark matter (CDM) model with a cosmological constant (ΛCDM). Our RSD measurements of fσ8, at 6 per cent precision, are similarly consistent with this model. When combined with supernova Ia data, we find H0 = 67.3 ± 1.0 kms-1 Mpc-1 even for our most general dark energy model, in tension with some direct measurements. Adding extra relativistic species as a degree of freedom loosens the constraint only slightly, to H0 = 67.8 ± 1.2 kms-1 Mpc-1. Assuming flat ΛCDM, we find ωm = 0.310 ± 0.005 and H0 = 67.6 ± 0.5 kms-1 Mpc-1, and we find a 95 per cent upper limit of 0.16 eV c-2 on the neutrino mass sum.

Original languageEnglish (US)
Pages (from-to)2617-2652
Number of pages36
JournalMonthly Notices of the Royal Astronomical Society
Volume470
Issue number3
DOIs
StatePublished - Sep 21 2017

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Keywords

  • Cosmology: observations
  • Large-scale structure of universe
  • distance scale

Fingerprint

Dive into the research topics of 'The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample'. Together they form a unique fingerprint.

Cite this