Abstract
Fibronectin is an extracellular-matrix glycoprotein encoded by a single gene, but with significant protein heterogeneity introduced through alternative RNA splicing and post-translational modifications. The (V + C)- splice variant, in which nucleotides encoding protein segments III-15 and I-10 are deleted along with the entire variable region, is unique in that expression is restricted to cartilaginous tissues. All known fibronectin splice variants retain the two C-terminal cysteine residues essential for dimerization, but cellular and/or structural constraints appear to influence homo- and heterodimerization patterns. Dimerization patterns of the (V + C)- isoform were studied under native conditions within canine articular cartilage and experimentally in COS-7, NIH-3T3 and CHO-K1 cell cultures. In all systems, (V + C)- fibronectin secretion was predominantly in a homodimeric configuration. Lower levels of (V + C)- monomers were also present. Heterodimers of (V + C)- with V+,C+ (V120) isoforms were not detected. Heterodimers of (V + C)- with V-,C+ (VO) subunits were detected only at low levels. Functional properties may differ significantly among monomers, homodimers and heterodimers. The unique dimerization pattern of (V + C)- fibronectin is consistent with this isoform having specialized functional properties in situ that are important for either the structural organization and biomechanical properties of cartilage matrix or regulation of a chondrocytic phenotype.
Original language | English (US) |
---|---|
Pages (from-to) | 555-561 |
Number of pages | 7 |
Journal | Biochemical Journal |
Volume | 341 |
Issue number | 3 |
DOIs | |
State | Published - Aug 1 1999 |
All Science Journal Classification (ASJC) codes
- Biochemistry
- Molecular Biology
- Cell Biology
Keywords
- Chondrocyte
- Dimerization
- Splice variant