TY - JOUR
T1 - The calibration and deployment of a low-cost methane sensor
AU - Riddick, Stuart N.
AU - Mauzerall, Denise L.
AU - Celia, Michael
AU - Allen, Grant
AU - Pitt, Joseph
AU - Kang, Mary
AU - Riddick, John C.
N1 - Publisher Copyright:
© 2020
PY - 2020/6/1
Y1 - 2020/6/1
N2 - Since 1850 the atmospheric mixing ratio of methane (CH4), a potent greenhouse gas, has doubled. This increase is directly linked to an escalation in emissions from anthropogenic sources. An inexpensive means to identify and monitor CH4 emission sources and evaluate the efficacy of mitigation strategies is essential. However, sourcing reliable, low-cost, easy-to-calibrate sensors that are fit for purpose is challenging. A recent study showed that CH4 mixing ratio data from a low-power, low-cost CH4 sensor (Figaro TGS2600) agreed well with CH4 mixing ratios measured by a high precision sensor at mixing ratios between 1.85 ppm and 2 ppm. To investigate, as a proof of concept, if this low-cost sensor could be used to measure typical ambient CH4 mixing ratios, we operated a TGS2600 in conjunction with a Los Gatos Ultra-portable Greenhouse Gas Analyzer (UGGA) in controlled laboratory conditions. We then explored the sensor's long-term reliability by deploying the TGS2600 near an onshore gas terminal to calculate emissions from May to July 2018. Our initial studies showed that previously published linear algorithms could not convert TGS2600 output to CH4 mixing ratios measured by the UGGA. However, we derived a non-linear empirical relationship that could be used to reliably convert the output of a TGS2600 unit to CH4 mixing ratios over a range of 1.85–5.85 ppm that agree to a high-precision instrument output to ±0.01 ppm. Our study showed that the TGS2600 could be used to continuously measure variability in CH4 mixing ratios from 1.82 to 5.40 ppm for three months downwind of the gas terminal. Using a simplified Gaussian Plume approach, these mixing ratios correspond to an emission flux range of 0–238 g CH4 s−1, with average emission of 9.6 g CH4 s−1 from the currently active North Terminal and 1.6 g CH4 s−1 from the decommissioned South Terminal. Our work here demonstrates the feasibility of utilizing a low-cost sensor to detect methane leakage at concentrations close to ambient background levels, as long as the device is routinely calibrated with an accurate reference instrument. Having a widely deployed network of such low-cost CH4 sensors would allow improved identification, monitoring and mitigation of a variety of CH4 emissions.
AB - Since 1850 the atmospheric mixing ratio of methane (CH4), a potent greenhouse gas, has doubled. This increase is directly linked to an escalation in emissions from anthropogenic sources. An inexpensive means to identify and monitor CH4 emission sources and evaluate the efficacy of mitigation strategies is essential. However, sourcing reliable, low-cost, easy-to-calibrate sensors that are fit for purpose is challenging. A recent study showed that CH4 mixing ratio data from a low-power, low-cost CH4 sensor (Figaro TGS2600) agreed well with CH4 mixing ratios measured by a high precision sensor at mixing ratios between 1.85 ppm and 2 ppm. To investigate, as a proof of concept, if this low-cost sensor could be used to measure typical ambient CH4 mixing ratios, we operated a TGS2600 in conjunction with a Los Gatos Ultra-portable Greenhouse Gas Analyzer (UGGA) in controlled laboratory conditions. We then explored the sensor's long-term reliability by deploying the TGS2600 near an onshore gas terminal to calculate emissions from May to July 2018. Our initial studies showed that previously published linear algorithms could not convert TGS2600 output to CH4 mixing ratios measured by the UGGA. However, we derived a non-linear empirical relationship that could be used to reliably convert the output of a TGS2600 unit to CH4 mixing ratios over a range of 1.85–5.85 ppm that agree to a high-precision instrument output to ±0.01 ppm. Our study showed that the TGS2600 could be used to continuously measure variability in CH4 mixing ratios from 1.82 to 5.40 ppm for three months downwind of the gas terminal. Using a simplified Gaussian Plume approach, these mixing ratios correspond to an emission flux range of 0–238 g CH4 s−1, with average emission of 9.6 g CH4 s−1 from the currently active North Terminal and 1.6 g CH4 s−1 from the decommissioned South Terminal. Our work here demonstrates the feasibility of utilizing a low-cost sensor to detect methane leakage at concentrations close to ambient background levels, as long as the device is routinely calibrated with an accurate reference instrument. Having a widely deployed network of such low-cost CH4 sensors would allow improved identification, monitoring and mitigation of a variety of CH4 emissions.
KW - Calibration
KW - Inexpensive
KW - Measurement
KW - Methane
KW - Mixing ratio
UR - http://www.scopus.com/inward/record.url?scp=85083696114&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85083696114&partnerID=8YFLogxK
U2 - 10.1016/j.atmosenv.2020.117440
DO - 10.1016/j.atmosenv.2020.117440
M3 - Article
AN - SCOPUS:85083696114
SN - 1352-2310
VL - 230
JO - Atmospheric Environment
JF - Atmospheric Environment
M1 - 117440
ER -