Abstract
We investigate thin and thick stellar disc formation in Milky Way-mass galaxies using 12 FIRE-2 cosmological zoom-in simulations. All simulated galaxies experience an early period of bursty star formation that transitions to a late-time steady phase of near-constant star formation. Stars formed during the late-time steady phase have more circular orbits and thin-disc-like morphology at z = 0, while stars born during the bursty phase have more radial orbits and thick-disc structure. The median age of thick-disc stars at z = 0 correlates strongly with this transition time. We also find that galaxies with an earlier transition from bursty to steady star formation have a higher thin-disc fractions at z = 0. Three of our systems have minor mergers with Large Magellanic Cloud-size satellites during the thin-disc phase. These mergers trigger short starbursts but do not destroy the thin disc nor alter broad trends between the star formation transition time and thin/thick-disc properties. If our simulations are representative of the Universe, then stellar archaeological studies of the Milky Way (or M31) provide a window into past star formation modes in the Galaxy. Current age estimates of the Galactic thick disc would suggest that the Milky Way transitioned from bursty to steady phase ~6.5 Gyr ago; prior to that time the Milky Way likely lacked a recognizable thin disc.
Original language | English (US) |
---|---|
Pages (from-to) | 889-902 |
Number of pages | 14 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 505 |
Issue number | 1 |
DOIs | |
State | Published - Jul 1 2021 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Keywords
- Galaxies: evolution
- Galaxies: formation
- Galaxies: star formation
- Galaxy: disc
- Methods: numerical