The Building Data Genome Project 2, energy meter data from the ASHRAE Great Energy Predictor III competition

Clayton Miller, Anjukan Kathirgamanathan, Bianca Picchetti, Pandarasamy Arjunan, June Young Park, Zoltan Nagy, Paul Raftery, Brodie W. Hobson, Zixiao Shi, Forrest Meggers

Research output: Contribution to journalArticlepeer-review

135 Scopus citations

Abstract

This paper describes an open data set of 3,053 energy meters from 1,636 non-residential buildings with a range of two full years (2016 and 2017) at an hourly frequency (17,544 measurements per meter resulting in approximately 53.6 million measurements). These meters were collected from 19 sites across North America and Europe, with one or more meters per building measuring whole building electrical, heating and cooling water, steam, and solar energy as well as water and irrigation meters. Part of these data was used in the Great Energy Predictor III (GEPIII) competition hosted by the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) in October-December 2019. GEPIII was a machine learning competition for long-term prediction with an application to measurement and verification. This paper describes the process of data collection, cleaning, and convergence of time-series meter data, the meta-data about the buildings, and complementary weather data. This data set can be used for further prediction benchmarking and prototyping as well as anomaly detection, energy analysis, and building type classification.

Original languageEnglish (US)
Article number368
JournalScientific Data
Volume7
Issue number1
DOIs
StatePublished - Dec 1 2020

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Information Systems
  • Education
  • Computer Science Applications
  • Statistics, Probability and Uncertainty
  • Library and Information Sciences

Fingerprint

Dive into the research topics of 'The Building Data Genome Project 2, energy meter data from the ASHRAE Great Energy Predictor III competition'. Together they form a unique fingerprint.

Cite this