The Atacama Cosmology Telescope: A Search for Planet 9

Sigurd Naess, Simone Aiola, Nick Battaglia, Richard J. Bond, Erminia Calabrese, Steve K. Choi, Nicholas F. Cothard, Mark Halpern, J. Colin Hill, Brian J. Koopman, Mark Devlin, Jeff McMahon, Simon Dicker, Adriaan J. Duivenvoorden, Jo Dunkley, Valentina Fanfani, Simone Ferraro, Patricio A. Gallardo, Yilun Guan, Dongwon HanMatthew Hasselfield, Adam D. Hincks, Kevin Huffenberger, Arthur B. Kosowsky, Thibaut Louis, Amanda Macinnis, Mathew S. Madhavacheril, Federico Nati, Michael D. Niemack, Lyman Page, Maria Salatino, Emmanuel Schaan, John Orlowski-Scherer, Alessandro Schillaci, Benjamin Schmitt, Neelima Sehgal, Cristóbal Sifón, Suzanne Staggs, Alexander Van Engelen, Edward J. Wollack

Research output: Contribution to journalArticlepeer-review

Abstract

We use Atacama Cosmology Telescope (ACT) observations at 98 GHz (2015–2019), 150 GHz (2013–2019), and 229 GHz (2017–2019) to perform a blind shift-and-stack search for Planet 9. The search explores distances from 300 au to 2000 au and velocities up to 6.′3 per year, depending on the distance (r). For a 5 Earth-mass Planet 9 the detection limit varies from 325 au to 625 au, depending on the sky location. For a 10 Earth-mass planet the corresponding range is 425 au to 775 au. The predicted aphelion and most likely location of the planet corresponds to the shallower end of these ranges. The search covers the whole 18,000 square degrees of the ACT survey. No significant detections are found, which is used to place limits on the millimeter-wave flux density of Planet 9 over much of its orbit. Overall we eliminate roughly 17% and 9% of the parameter space for a 5 and 10 Earth-mass Planet 9, respectively. These bounds approach those of a recent INPOP19a ephemeris-based analysis, but do not exceed it. We also provide a list of the 10 strongest candidates from the search for possible follow-up. More generally, we exclude (at 95% confidence) the presence of an unknown solar system object within our survey area brighter than 4–12 mJy (depending on position) at 150 GHz with current distance 300 au < r < 600 au and heliocentric angular velocity , corresponding to low-to-moderate eccentricities. These limits worsen gradually beyond 600 au, reaching 5–15 mJy by 1500 au.

Original languageEnglish (US)
Article number224
JournalAstrophysical Journal
Volume923
Issue number2
DOIs
StatePublished - Dec 20 2021

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'The Atacama Cosmology Telescope: A Search for Planet 9'. Together they form a unique fingerprint.

Cite this