@inproceedings{8d66516f623a4a208bc7092c6c257b30,
title = "The application of differential privacy for rank aggregation: Privacy and accuracy",
abstract = "The potential risk of privacy leakage prevents users from sharing their honest opinions on social platforms. This paper addresses the problem of privacy preservation if the query returns the histogram of rankings. The framework of differential privacy is applied to rank aggregation. The error probability of the aggregated ranking is analyzed as a result of noise added in order to achieve differential privacy. Upper bounds on the error rates for any positional ranking rule are derived under the assumption that profiles are uniformly distributed. Simulation results are provided to validate the probabilistic analysis.",
keywords = "Accuracy, Privacy, Rank Aggregation",
author = "Shang Shang and Tiance Wang and Paul Cuff and Sanjeev Kulkarni",
note = "Publisher Copyright: {\textcopyright} 2014 International Society of Information Fusion.; 17th International Conference on Information Fusion, FUSION 2014 ; Conference date: 07-07-2014 Through 10-07-2014",
year = "2014",
month = oct,
day = "3",
language = "English (US)",
series = "FUSION 2014 - 17th International Conference on Information Fusion",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "FUSION 2014 - 17th International Conference on Information Fusion",
address = "United States",
}