TY - JOUR
T1 - Thanatology in protoplanetary discs
T2 - The combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones
AU - Lesur, Geoffroy
AU - Kunz, Matthew Walter
AU - Fromang, Sébastien
N1 - Funding Information:
G.L. is indebted to Wing-Fai Thi for his many suggestions and clarifications concerning the radiative and chemical processes relevant to protoplanetary discs. G.L. also thanks Andrea Mignone and Gábor Tóth for fruitful discussions regarding the numerical implementation of the Hall effect during the Astronum 2013 conference. Support for G.L. was provided by the European Community via contract PCIG09-GA-2011-294110. Support for M.W.K. was provided by NASA through Einstein Postdoctoral Fellowship Award Number PF1-120084, issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. Support for S.F. was provided by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement n 258729. Most of the the computations presented in this paper were performed using the Froggy platform of the CIMENT infrastructure (https://ciment.ujf-grenoble.fr), which is supported by the Rhône-Alpes region (GRANT CPER07_13 CIRA), the OSUG@2020 labex (reference ANR10 LABX56) and the Equip@Meso project (reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche. This work was granted access to the HPC resources of IDRIS under allocation x2014042231 made by GENCI (Grand Equipement National de Calcul Intensif).
PY - 2014/6
Y1 - 2014/6
N2 - Protoplanetary discs are poorly ionised due to their low temperatures and high column densities and are therefore subject to three "non-ideal" magnetohydrodynamic (MHD) effects: Ohmic dissipation, ambipolar diffusion, and the Hall effect. The existence of magnetically driven turbulence in these discs has been a central question since the discovery of the magnetorotational instability (MRI). Early models considered Ohmic diffusion only and led to a scenario of layered accretion, in which a magnetically "dead" zone in the disc midplane is embedded within magnetically "active" surface layers at distances of about 1-10 au from the central protostellar object. Recent work has suggested that a combination of Ohmic dissipation and ambipolar diffusion can render both the midplane and surface layers of the disc inactive and that torques due to magnetically driven outflows are required to explain the observed accretion rates. We reassess this picture by performing three-dimensional numerical simulations that include all three non-ideal MHD effects for the first time. We find that the Hall effect can generically "revive" dead zones by producing a dominant azimuthal magnetic field and a large-scale Maxwell stress throughout the midplane, provided that the angular velocity and magnetic field satisfy Ω·B > 0. The attendant large magnetic pressure modifies the vertical density profile and substantially increases the disc scale height beyond its hydrostatic value. Outflows are produced but are not necessary to explain accretion rates ≤ 10-7 M⊙ yr-1. The flow in the disc midplane is essentially laminar, suggesting that dust sedimentation may be efficient. These results demonstrate that if the MRI is relevant for driving mass accretion in protoplanetary discs, one must include the Hall effect to obtain even qualitatively correct results.
AB - Protoplanetary discs are poorly ionised due to their low temperatures and high column densities and are therefore subject to three "non-ideal" magnetohydrodynamic (MHD) effects: Ohmic dissipation, ambipolar diffusion, and the Hall effect. The existence of magnetically driven turbulence in these discs has been a central question since the discovery of the magnetorotational instability (MRI). Early models considered Ohmic diffusion only and led to a scenario of layered accretion, in which a magnetically "dead" zone in the disc midplane is embedded within magnetically "active" surface layers at distances of about 1-10 au from the central protostellar object. Recent work has suggested that a combination of Ohmic dissipation and ambipolar diffusion can render both the midplane and surface layers of the disc inactive and that torques due to magnetically driven outflows are required to explain the observed accretion rates. We reassess this picture by performing three-dimensional numerical simulations that include all three non-ideal MHD effects for the first time. We find that the Hall effect can generically "revive" dead zones by producing a dominant azimuthal magnetic field and a large-scale Maxwell stress throughout the midplane, provided that the angular velocity and magnetic field satisfy Ω·B > 0. The attendant large magnetic pressure modifies the vertical density profile and substantially increases the disc scale height beyond its hydrostatic value. Outflows are produced but are not necessary to explain accretion rates ≤ 10-7 M⊙ yr-1. The flow in the disc midplane is essentially laminar, suggesting that dust sedimentation may be efficient. These results demonstrate that if the MRI is relevant for driving mass accretion in protoplanetary discs, one must include the Hall effect to obtain even qualitatively correct results.
KW - Accretion, accretion disks
KW - Instabilities
KW - Magnetohydrodynamics (MHD)
KW - Protoplanetary disks
KW - Stars: formation
UR - http://www.scopus.com/inward/record.url?scp=84902254812&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902254812&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/201423660
DO - 10.1051/0004-6361/201423660
M3 - Article
AN - SCOPUS:84902254812
SN - 0004-6361
VL - 566
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
M1 - A56
ER -