TFTR DT experiments

J. D. Strachan, S. Batha, M. Beer, M. G. Bell, R. E. Bell, A. Belov, H. Berk, S. Bernabei, M. Bitter, B. Breizman, N. L. Bretz, R. Budny, C. E. Bush, J. Callen, S. Cauffman, C. S. Chang, Z. Chang, C. Z. Cheng, D. S. Darrow, R. O. BendyW. Borland, H. Buong, P. C. Efthimion, B. Ernst, H. Evenson, N. J. Fisch, R. Fisher, R. J. Fonck, E. B. Fredrickson, G. Y. Fu, H. P. Furth, N. N. Gorelenkov, V. Ya Goloborod'ko, B. Grek, L. R. Grisham, G. W. Hammett, R. J. Hawryluk, W. Heidbrink, H. W. Herrmann, M. C. Herrmann, K. W. Hill, J. Hogan, B. Hooper, J. C. Hosea, W. A. Houlberg, M. Hughes, B. L. Jassby, F. C. Jobes, B. W. Johnson, R. Kaita, S. Kaye, J. Kesner, J. S. Kim, M. Kissick, A. V. Krasilnikov, H. Kugel, A. Kumar, N. T. Lam, P. Lamarche, B. Leblanc, F. M. Levinton, C. Ludescher, J. Machuzak, R. P. Majeski, J. Manickam, B. K. Mansfield, M. Mauel, E. Mazzucato, J. McChesney, B. C. McCune, G. McKee, K. M. McGuire, B. M. Meade, S. S. Medley, B. R. Mikkelsen, S. V. Mirnov, B. Mueller, Y. Nagayama, G. A. Navratil, R. Nazikian, M. Okabayashi, M. Osakabe, B. K. Owens, H. K. Park, W. Park, S. F. Paul, M. P. Petrov, C. K. Phillips, M. Phillips, P. Phillips, A. T. Ramsey, B. Rice, M. H. Redi, G. Rewoldt, S. Reznik, A. L. Roquemore, J. Rogers, E. Ruskov, S. A. Sabbagh, M. Sasao, G. Schilling, G. L. Schmidt, S. B. Scott, I. Semenov, T. Senko, C. H. Skinner, T. Stevenson, E. J. Strait, B. C. Stratton, W. Stodiek, E. Synakowski, H. Takahashi, W. Tang, G. Taylor, M. E. Thompson, S. Von Goeler, A. Von Halle, R. T. Walters, S. Wang, R. White, R. M. Wieland, M. Williams, J. R. Wilson, K. L. Wong, G. A. Wurden, M. Yamada, V. Yavorski, K. M. Young, L. Zakharov, M. C. Zarnstorff, S. J. Zweben

Research output: Contribution to journalArticle

25 Scopus citations

Abstract

The Tokamak Fusion Test Reactor (TFTR) is a large tokamak which has performed experiments with 50:50 deuterium-tritium fuelled plasmas. Since 1993, TFTR has produced about 1090 D-T plasmas using about 100 grams of tritium and producing about 1.6 GJ of D-T fusion energy. These plasmas have significant populations of 3.5 MeV alphas (the charged D-T fusion product). TFTR research has focused on alpha particle confinement, alpha driven modes, and alpha heating studies. Maximum D-T fusion power production has aided these studies, requiring simultaneously operation at high input heating power and large energy confinement time (to produce the highest temperature and density), while maintaining low impurity content. The principal limitation to the TFTR fusion power production was the disruptive stability limit. Secondary limitations were the confinement time, and limiter power handling capability.

Original languageEnglish (US)
Pages (from-to)B103-B114
JournalPlasma Physics and Controlled Fusion
Volume39
Issue number12B
DOIs
StatePublished - 1997

All Science Journal Classification (ASJC) codes

  • Nuclear Energy and Engineering
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'TFTR DT experiments'. Together they form a unique fingerprint.

  • Cite this

    Strachan, J. D., Batha, S., Beer, M., Bell, M. G., Bell, R. E., Belov, A., Berk, H., Bernabei, S., Bitter, M., Breizman, B., Bretz, N. L., Budny, R., Bush, C. E., Callen, J., Cauffman, S., Chang, C. S., Chang, Z., Cheng, C. Z., Darrow, D. S., ... Zweben, S. J. (1997). TFTR DT experiments. Plasma Physics and Controlled Fusion, 39(12B), B103-B114. https://doi.org/10.1088/0741-3335/39/12B/008