TY - GEN
T1 - Testing of novel compliant spines for passive wing morphing
AU - Wissa, Aimy
AU - Tummala, Yashwanth
AU - Hubbard, James E.
AU - Frecker, Mary
AU - Brown, Alexander
PY - 2011
Y1 - 2011
N2 - Flapping wing Unmanned Aerial Vehicles (UAVs) or ornithopters are proliferating in both the civil and military markets. Ornithopters have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. These traits promise optimized performance over multiple mission scenarios. Nature achieves this broad performance in birds using wing gaits that are optimized for a particular flight regime. The goal of this work is to improve the performance of ornithopters during steady level flight by passively implementing the Continuous Vortex Gait (CVG) found in natural avian flyers. In this paper we present new experimental results for a one degree of freedom (1DOF) compliant spine which was inserted into an experimental test ornithopter leading edge wing spar in order to achieve the desired kinematics. The lift and thrust along with electric power metrics at different flapping frequencies were measured using a six-channel load cell and a current senor, respectively. These metrics were determined for the test ornithopter both with and without the compliant spine insert. Initial results validate the ability of our compliant spine design to withstand the loads seen during flight at flapping frequencies of up to and including 5 Hz. For the ornithopter test platform used in the study, inserting the compliant spines into the wing leading edge spar accurately simulates the CVG increasing the mean lift by 16%, and reducing the power consumed by 45% without incurring any thrust penalties.
AB - Flapping wing Unmanned Aerial Vehicles (UAVs) or ornithopters are proliferating in both the civil and military markets. Ornithopters have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. These traits promise optimized performance over multiple mission scenarios. Nature achieves this broad performance in birds using wing gaits that are optimized for a particular flight regime. The goal of this work is to improve the performance of ornithopters during steady level flight by passively implementing the Continuous Vortex Gait (CVG) found in natural avian flyers. In this paper we present new experimental results for a one degree of freedom (1DOF) compliant spine which was inserted into an experimental test ornithopter leading edge wing spar in order to achieve the desired kinematics. The lift and thrust along with electric power metrics at different flapping frequencies were measured using a six-channel load cell and a current senor, respectively. These metrics were determined for the test ornithopter both with and without the compliant spine insert. Initial results validate the ability of our compliant spine design to withstand the loads seen during flight at flapping frequencies of up to and including 5 Hz. For the ornithopter test platform used in the study, inserting the compliant spines into the wing leading edge spar accurately simulates the CVG increasing the mean lift by 16%, and reducing the power consumed by 45% without incurring any thrust penalties.
UR - http://www.scopus.com/inward/record.url?scp=84859537795&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84859537795&partnerID=8YFLogxK
U2 - 10.1115/smasis2011-5198
DO - 10.1115/smasis2011-5198
M3 - Conference contribution
AN - SCOPUS:84859537795
SN - 9780791854723
T3 - ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2011
SP - 733
EP - 742
BT - ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2011
PB - American Society of Mechanical Engineers
T2 - ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2011
Y2 - 18 September 2011 through 21 September 2011
ER -