Testing linear-invariant properties

Jonathan Tidor, Yufei Zhao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Fix a prime p and a positive integer R. We study the property testing of functions mathbb{F} {p}{n} rightarrow[R]. We say that a property is testable if there exists an oblivious tester for this property with one-sided error and constant query complexity. Furthermore, a property is proximity oblivious-testable (PO-testable) if the test is also independent of the proximity parameter epsilon. It is known that a number of natural properties such as linearity and being a low degree polynomial are PO-testable. These properties are examples of linear-invariant properties, meaning that they are preserved under linear automorphisms of the domain. Following work of Kaufman and Sudan, the study of linear-invariant properties has been an important problem in arithmetic property testing. A central conjecture in this field, proposed by Bhattacharyya, Grigorescu, and Shapira, is that a linear-invariant property is testable if and only if it is semi subspace-hereditary. We prove two results, the first resolves this conjecture and the second classifies PO-testable properties. 1)A linear-invariant property is testable if and only if it is semi subspace-hereditary. 2)A linear-invariant property is PO-testable if and only if it is locally characterized. Our innovations are two-fold. We give a more powerful version of the compactness argument first introduced by Alon and Shapira. This relies on a new strong arithmetic regularity lemma in which one mixes different levels of Gowers uniformity. This allows us to extend the work of Bhattacharyya, Fischer, Hatami, Hatami, and Lovett by removing the bounded complexity restriction in their work. Our second innovation is a novel recoloring technique called patching. This Ramsey-theoretic technique is critical for working in the linear-invariant setting and allows us to remove the translation-invariant restriction present in previous work.

Original languageEnglish (US)
Title of host publicationProceedings - 2020 IEEE 61st Annual Symposium on Foundations of Computer Science, FOCS 2020
PublisherIEEE Computer Society
Pages1180-1190
Number of pages11
ISBN (Electronic)9781728196213
DOIs
StatePublished - Nov 2020
Externally publishedYes
Event61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020 - Virtual, Durham, United States
Duration: Nov 16 2020Nov 19 2020

Publication series

NameProceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
Volume2020-November
ISSN (Print)0272-5428

Conference

Conference61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020
Country/TerritoryUnited States
CityVirtual, Durham
Period11/16/2011/19/20

All Science Journal Classification (ASJC) codes

  • General Computer Science

Keywords

  • higher-order Fourier analysis
  • property testing
  • removal lemmas
  • sublinear time algorithms

Fingerprint

Dive into the research topics of 'Testing linear-invariant properties'. Together they form a unique fingerprint.

Cite this