Abstract
Let G be a graph on n vertices and suppose that at least εn2 edges have to be deleted from it to make it k-colorable. It is shown that in this case most induced subgraphs of G on ck ln k/ε2 vertices are not k-colorable, where c > 0 is an absolute constant. If G is as above for k = 2, then most induced subgraphs on (ln(1/ε))b/ε are nonbipartite, for some absolute positive constant b, and this is tight up to the polylogarithmic factor. Both results are motivated by the study of testing algorithms for k-colorability, first considered by Goldreich, Goldwasser, and Ron in [J. ACM, 45 (1998), pp. 653-750], and improve the results in that paper.
Original language | English (US) |
---|---|
Pages (from-to) | 211-227 |
Number of pages | 17 |
Journal | SIAM Journal on Discrete Mathematics |
Volume | 15 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2002 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Mathematics
Keywords
- Graph coloring
- Property testing