Temporal and angular variations of 3D core-collapse supernova emissions and their physical correlations

David Vartanyan, Adam Burrows, David Radice

Research output: Contribution to journalArticlepeer-review

79 Scopus citations


We provide the time series and angular distributions of the neutrino and gravitational wave emissions of 11 state-of-the-art 3D non-rotating core-collapse supernova models and explore correlations between these signatures and the real-time dynamics of the shock and the protoneutron star (PNS) core. The neutrino emissions are roughly isotropic on average, with instantaneous excursions about the mean inferred luminosity of as much as ±20 per cent. The deviation from isotropy is least for the 'vμ'-type neutrinos and the lowest mass progenitors. Instantaneous temporal luminosity variations along a given direction for exploding models average ∼2-4 per cent, but can be as high as ∼10 per cent. For non-exploding models, they can achieve ∼25 per cent. The temporal variations in the neutrino emissions correlate with the temporal and angular variations in the mass accretion rate. We witness the lepton-number emission self-sustained asymmetry (LESA) phenomenon in all our models and find that the vector direction of the LESA dipole and that of the inner Ye distribution are highly correlated. For our entire set of 3D models, we find strong connections between the cumulative neutrino energy losses, the radius of the proto-neutron star, and the f-mode frequency of the gravitational wave emissions. When physically normalized, the progenitor-to-progenitor variation in any of these quantities is no more than ∼10 per cent. Moreover, the reduced f-mode frequency is independent of time after bounce to better than ∼10 per cent. Therefore, simultaneous measurement of gravitational waves and neutrinos from a given supernova event can be used synergistically to extract real physical quantities of the supernova core.

Original languageEnglish (US)
Pages (from-to)2227-2246
Number of pages20
JournalMonthly Notices of the Royal Astronomical Society
Issue number2
StatePublished - Oct 21 2019

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science


  • Supernovae: General


Dive into the research topics of 'Temporal and angular variations of 3D core-collapse supernova emissions and their physical correlations'. Together they form a unique fingerprint.

Cite this