TY - GEN
T1 - TANGO
T2 - 21st USENIX Symposium on Networked Systems Design and Implementation, NSDI 2024
AU - Birge-Lee, Henry
AU - Yoo, Sophia
AU - Herber, Benjamin
AU - Rexford, Jennifer
AU - Apostolaki, Maria
N1 - Publisher Copyright:
© 2024 Proceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation, NSDI 2024. All rights reserved.
PY - 2024
Y1 - 2024
N2 - As the demands of modern latency-critical applications grow, major service providers are seeking to meet those demands by expanding their infrastructure to the edge and offering global connectivity through private WANs or Network-as-a-Service solutions. Unfortunately, these approaches are costly for smaller edge networks and lead to Internet consolidation. Worse, since the public Internet suffers from limited visibility and control over interdomain routing, smaller edges today are left with poor alternatives outside of joining the hypergiants. As a new alternative, we introduce TANGO, which enables smaller edges to expose paths and exert route control over the public Internet without relying on third parties or cooperation from the Internet core, to dynamically meet the performance needs of their customers. We show that, using collaboration, TANGO edges can jointly (i) expose more BGP-compliant wide-area paths via coordinated BGP advertisements; (ii) collect fine-grained, trustworthy telemetry using cryptographically-protected custom headers; and (iii) dynamically reroute traffic in the data plane. TANGO innovates in both the control and data planes, and runs on a programmable switch or in eBPF. Our Internet-scale experiments uncover rich path diversity, exposing paths that outperform the default BGP path 75-100% of the time for 20 edge pairs across multiple continents, while reducing latency by up to 39% compared to the default.
AB - As the demands of modern latency-critical applications grow, major service providers are seeking to meet those demands by expanding their infrastructure to the edge and offering global connectivity through private WANs or Network-as-a-Service solutions. Unfortunately, these approaches are costly for smaller edge networks and lead to Internet consolidation. Worse, since the public Internet suffers from limited visibility and control over interdomain routing, smaller edges today are left with poor alternatives outside of joining the hypergiants. As a new alternative, we introduce TANGO, which enables smaller edges to expose paths and exert route control over the public Internet without relying on third parties or cooperation from the Internet core, to dynamically meet the performance needs of their customers. We show that, using collaboration, TANGO edges can jointly (i) expose more BGP-compliant wide-area paths via coordinated BGP advertisements; (ii) collect fine-grained, trustworthy telemetry using cryptographically-protected custom headers; and (iii) dynamically reroute traffic in the data plane. TANGO innovates in both the control and data planes, and runs on a programmable switch or in eBPF. Our Internet-scale experiments uncover rich path diversity, exposing paths that outperform the default BGP path 75-100% of the time for 20 edge pairs across multiple continents, while reducing latency by up to 39% compared to the default.
UR - http://www.scopus.com/inward/record.url?scp=85194153991&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85194153991&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85194153991
T3 - Proceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation, NSDI 2024
SP - 1791
EP - 1811
BT - Proceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation, NSDI 2024
PB - USENIX Association
Y2 - 16 April 2024 through 18 April 2024
ER -