TY - JOUR
T1 - Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster
AU - Jumbo-Lucioni, Patricia
AU - Ayroles, Julien F.
AU - Chambers, Michelle M.
AU - Jordan, Katherine W.
AU - Leips, Jeff
AU - Mackay, Trudy F.C.
AU - De Luca, Maria
N1 - Funding Information:
We are grateful to Dr Brett McKinney for contributing with analytic tools. We thank two anonymous reviewers for their valuable suggestions. We also thank Dr Barbara Gower for her technical assistance in the metabolite measurements. Dr Gower's laboratory is supported, in part, by NIH Grants P30-DK56336 (NORC), P60-DK079626 (DRTC), and UL1RR025777 (CCTS). This study was supported by NIH Grants R01 DK084219 to MDL and JL and R01 GM 45146 to TFCM.
PY - 2010/5/11
Y1 - 2010/5/11
N2 - Background: Obesity and phenotypic traits associated with this condition exhibit significant heritability in natural populations of most organisms. While a number of genes and genetic pathways have been implicated to play a role in obesity associated traits, the genetic architecture that underlies the natural variation in these traits is largely unknown. Here, we used 40 wild-derived inbred lines of Drosophila melanogaster to quantify genetic variation in body weight, the content of three major metabolites (glycogen, triacylglycerol, and glycerol) associated with obesity, and metabolic rate in young flies. We chose these lines because they were previously screened for variation in whole-genome transcript abundance and in several adult life-history traits, including longevity, resistance to starvation stress, chill-coma recovery, mating behavior, and competitive fitness. This enabled us not only to identify candidate genes and transcriptional networks that might explain variation for energy metabolism traits, but also to investigate the genetic interrelationships among energy metabolism, behavioral, and life-history traits that have evolved in natural populations.Results: We found significant genetically based variation in all traits. Using a genome-wide association screen for single feature polymorphisms and quantitative trait transcripts, we identified 337, 211, 237, 553, and 152 novel candidate genes associated with body weight, glycogen content, triacylglycerol storage, glycerol levels, and metabolic rate, respectively. Weighted gene co-expression analyses grouped transcripts associated with each trait in significant modules of co-expressed genes and we interpreted these modules in terms of their gene enrichment based on Gene Ontology analysis. Comparison of gene co-expression modules for traits in this study with previously determined modules for life-history traits identified significant modular pleiotropy between glycogen content, body weight, competitive fitness, and starvation resistance.Conclusions: Combining a large phenotypic dataset with information on variation in genome wide transcriptional profiles has provided insight into the complex genetic architecture underlying natural variation in traits that have been associated with obesity. Our findings suggest that understanding the maintenance of genetic variation in metabolic traits in natural populations may require that we understand more fully the degree to which these traits are genetically correlated with other traits, especially those directly affecting fitness.
AB - Background: Obesity and phenotypic traits associated with this condition exhibit significant heritability in natural populations of most organisms. While a number of genes and genetic pathways have been implicated to play a role in obesity associated traits, the genetic architecture that underlies the natural variation in these traits is largely unknown. Here, we used 40 wild-derived inbred lines of Drosophila melanogaster to quantify genetic variation in body weight, the content of three major metabolites (glycogen, triacylglycerol, and glycerol) associated with obesity, and metabolic rate in young flies. We chose these lines because they were previously screened for variation in whole-genome transcript abundance and in several adult life-history traits, including longevity, resistance to starvation stress, chill-coma recovery, mating behavior, and competitive fitness. This enabled us not only to identify candidate genes and transcriptional networks that might explain variation for energy metabolism traits, but also to investigate the genetic interrelationships among energy metabolism, behavioral, and life-history traits that have evolved in natural populations.Results: We found significant genetically based variation in all traits. Using a genome-wide association screen for single feature polymorphisms and quantitative trait transcripts, we identified 337, 211, 237, 553, and 152 novel candidate genes associated with body weight, glycogen content, triacylglycerol storage, glycerol levels, and metabolic rate, respectively. Weighted gene co-expression analyses grouped transcripts associated with each trait in significant modules of co-expressed genes and we interpreted these modules in terms of their gene enrichment based on Gene Ontology analysis. Comparison of gene co-expression modules for traits in this study with previously determined modules for life-history traits identified significant modular pleiotropy between glycogen content, body weight, competitive fitness, and starvation resistance.Conclusions: Combining a large phenotypic dataset with information on variation in genome wide transcriptional profiles has provided insight into the complex genetic architecture underlying natural variation in traits that have been associated with obesity. Our findings suggest that understanding the maintenance of genetic variation in metabolic traits in natural populations may require that we understand more fully the degree to which these traits are genetically correlated with other traits, especially those directly affecting fitness.
UR - http://www.scopus.com/inward/record.url?scp=77951961924&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951961924&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-11-297
DO - 10.1186/1471-2164-11-297
M3 - Article
C2 - 20459830
AN - SCOPUS:77951961924
SN - 1471-2164
VL - 11
JO - BMC Genomics
JF - BMC Genomics
IS - 1
M1 - 297
ER -