Systematic Visual Reasoning through Object-Centric Relational Abstraction

Taylor W. Webb, Shanka Subhra Mondal, Jonathan D. Cohen

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

Human visual reasoning is characterized by an ability to identify abstract patterns from only a small number of examples, and to systematically generalize those patterns to novel inputs. This capacity depends in large part on our ability to represent complex visual inputs in terms of both objects and relations. Recent work in computer vision has introduced models with the capacity to extract object-centric representations, leading to the ability to process multi-object visual inputs, but falling short of the systematic generalization displayed by human reasoning. Other recent models have employed inductive biases for relational abstraction to achieve systematic generalization of learned abstract rules, but have generally assumed the presence of object-focused inputs. Here, we combine these two approaches, introducing Object-Centric Relational Abstraction (OCRA), a model that extracts explicit representations of both objects and abstract relations, and achieves strong systematic generalization in tasks (including a novel dataset, CLEVR-ART, with greater visual complexity) involving complex visual displays.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume36
StatePublished - 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: Dec 10 2023Dec 16 2023

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Systematic Visual Reasoning through Object-Centric Relational Abstraction'. Together they form a unique fingerprint.

Cite this