TY - JOUR
T1 - Synthetic Nuances to Maximize n-Type Organic Electrochemical Transistor and Thermoelectric Performance in Fused Lactam Polymers
AU - Marks, Adam
AU - Chen, Xingxing
AU - Wu, Ruiheng
AU - Rashid, Reem B.
AU - Jin, Wenlong
AU - Paulsen, Bryan D.
AU - Moser, Maximilian
AU - Ji, Xudong
AU - Griggs, Sophie
AU - Meli, Dilara
AU - Wu, Xiaocui
AU - Bristow, Helen
AU - Strzalka, Joseph
AU - Gasparini, Nicola
AU - Costantini, Giovanni
AU - Fabiano, Simone
AU - Rivnay, Jonathan
AU - McCulloch, Iain
N1 - Publisher Copyright:
© 2022 American Chemical Society.
PY - 2022/3/16
Y1 - 2022/3/16
N2 - A series of fully fused n-type mixed conduction lactam polymers p(g7NCnN), systematically increasing the alkyl side chain content, are synthesized via an inexpensive, nontoxic, precious-metal-free aldol polycondensation. Employing these polymers as channel materials in organic electrochemical transistors (OECTs) affords state-of-the-art n-type performance with p(g7NC10N) recording an OECT electron mobility of 1.20 × 10-2 cm2 V-1 s-1 and a μC∗ figure of merit of 1.83 F cm-1 V-1 s-1. In parallel to high OECT performance, upon solution doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine (N-DMBI), the highest thermoelectric performance is observed for p(g7NC4N), with a maximum electrical conductivity of 7.67 S cm-1 and a power factor of 10.4 μW m-1 K-2. These results are among the highest reported for n-type polymers. Importantly, while this series of fused polylactam organic mixed ionic-electronic conductors (OMIECs) highlights that synthetic molecular design strategies to bolster OECT performance can be translated to also achieve high organic thermoelectric (OTE) performance, a nuanced synthetic approach must be used to optimize performance. Herein, we outline the performance metrics and provide new insights into the molecular design guidelines for the next generation of high-performance n-type materials for mixed conduction applications, presenting for the first time the results of a single polymer series within both OECT and OTE applications.
AB - A series of fully fused n-type mixed conduction lactam polymers p(g7NCnN), systematically increasing the alkyl side chain content, are synthesized via an inexpensive, nontoxic, precious-metal-free aldol polycondensation. Employing these polymers as channel materials in organic electrochemical transistors (OECTs) affords state-of-the-art n-type performance with p(g7NC10N) recording an OECT electron mobility of 1.20 × 10-2 cm2 V-1 s-1 and a μC∗ figure of merit of 1.83 F cm-1 V-1 s-1. In parallel to high OECT performance, upon solution doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine (N-DMBI), the highest thermoelectric performance is observed for p(g7NC4N), with a maximum electrical conductivity of 7.67 S cm-1 and a power factor of 10.4 μW m-1 K-2. These results are among the highest reported for n-type polymers. Importantly, while this series of fused polylactam organic mixed ionic-electronic conductors (OMIECs) highlights that synthetic molecular design strategies to bolster OECT performance can be translated to also achieve high organic thermoelectric (OTE) performance, a nuanced synthetic approach must be used to optimize performance. Herein, we outline the performance metrics and provide new insights into the molecular design guidelines for the next generation of high-performance n-type materials for mixed conduction applications, presenting for the first time the results of a single polymer series within both OECT and OTE applications.
UR - http://www.scopus.com/inward/record.url?scp=85126592627&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85126592627&partnerID=8YFLogxK
U2 - 10.1021/jacs.2c00735
DO - 10.1021/jacs.2c00735
M3 - Article
C2 - 35257589
AN - SCOPUS:85126592627
SN - 0002-7863
VL - 144
SP - 4642
EP - 4656
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 10
ER -