Synthesis of a base-free hafnium nitride from N2 cleavage: A versatile platform for dinitrogen functionalization

Scott P. Semproni, Paul J. Chirik

Research output: Contribution to journalArticlepeer-review

65 Scopus citations

Abstract

The synthesis and characterization of a metastable, base-free isocyanato dihafnocene μ-nitrido complex from CO-induced dinitrogen cleavage is described. The open coordination site at hafnium suggested the possibility of functionalization of the nitrogen atom by cycloaddition and insertion chemistry. Addition of the strained, activated alkyne, cyclooctyne, resulted in N-C bond formation by cycloaddition. The alkyne product is kinetically unstable engaging the terminal hafnocene isocyanate and promoting deoxygenation and additional N-C bond formation resulting in a substituted cyanamide ligand. Group transfer between hafnium centers was observed upon treatment with Me3SiCl resulting in bridging carbodiimidyl ligands. Amidinato-type ligands, [NC(R)N]3- were prepared by addition of either cyclohexyl or isobutyronitrile to the base free dihafnocene μ-nitrido complex, which also engages in additional N-C bond formation with the terminal isocyanate to form bridging ureate-type ligands. Heterocummulenes also proved reactive as exposure of the nitride complex to CO2 resulted in deoxygenation and N-C bond formation to form isocyanate ligands. With substituted isocyanates, cycloaddition to the dihafnocene μ-nitrido was observed forming ureate ligands, which upon thermolysis isomerize to bridging carbodiimides. Taken together, these results establish the base free dihafnocene μ-nitrido as a versatile platform to synthesize organic molecules from N2 and carbon monoxide.

Original languageEnglish (US)
Pages (from-to)11373-11383
Number of pages11
JournalJournal of the American Chemical Society
Volume135
Issue number30
DOIs
StatePublished - Jul 31 2013

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Biochemistry
  • Catalysis
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Synthesis of a base-free hafnium nitride from N2 cleavage: A versatile platform for dinitrogen functionalization'. Together they form a unique fingerprint.

Cite this