Synthesis and optimization of force closure grasps via sequential semidefinite programming

Hongkai Dai, Anirudha Majumdar, Russ Tedrake

Research output: Chapter in Book/Report/Conference proceedingChapter

9 Scopus citations

Abstract

In this paper we present a novel approach for synthesizing and optimizing both positions and forces in force closure grasps. This problem is a non-convex optimization problem in general since it involves constraints that are bilinear; in particular, computing wrenches involves a bilinear product between grasp contact points and contact forces. Thus, conventional approaches to this problem typically employ general purpose gradient-based nonlinear optimization. The key observation of this paper is that the force closure grasp synthesis problem can be posed as a Bilinear Matrix Inequality (BMI), for which there exist efficient solution techniques based on semidefinite programming. We show that we can synthesize force closure grasps on different geometric objects, and by maximizing a lower bound of a grasp metric, we can improve the quality of the grasp. While this approach is not guaranteed to find a solution, it has a few distinct advantages. First, we can handle non-smooth but convex positive semidefinite constraints, which can often be important. Second, in contrast to gradient-based approaches we can prove infeasibility of problems. We demonstrate our method on a 15 joint robot model grasping objects with various geometries. The code is included in https://github.com/RobotLocomotion/drake.

Original languageEnglish (US)
Title of host publicationSpringer Proceedings in Advanced Robotics
PublisherSpringer Science and Business Media B.V.
Pages285-305
Number of pages21
DOIs
StatePublished - 2018

Publication series

NameSpringer Proceedings in Advanced Robotics
Volume2
ISSN (Print)2511-1256
ISSN (Electronic)2511-1264

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Engineering (miscellaneous)
  • Artificial Intelligence
  • Computer Science Applications
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Synthesis and optimization of force closure grasps via sequential semidefinite programming'. Together they form a unique fingerprint.

Cite this