Abstract
The formation and properties of the post-perovskite (CaIrO3-type) phase were studied in Fe-rich compositions along the pyrope-almandine ((Mg,Fe)3Al2Si3O12) join. Natural and synthetic garnet starting materials with almandine fractions from 38 to 90mol% were studied using synchrotron X-ray diffraction in the laser-heated diamond anvil cell. Single-phase post-perovskite could be successfully synthesized from garnet compositions at pressures above 148GPa and temperatures higher than 1600K. In some cases, evidence for a minor amount of Al2O3 post-perovskite was observed for Alm38 and Alm54 compositions in the perovskite+post-perovskite two-phase region. Pressure-volume data for the post-perovskite phases collected during decompression show that incorporation of Fe leads to a systematic increase of unit cell volume broadly similar to the variation observed in the (Mg,Fe)SiO3 system. The presence of Al2O3 increases the stability of perovskite relative to post-perovskite, requiring higher pressures (>148GPa) for synthesis of pure post-perovskites. Our data together with those of Tateno et al. (2005) also suggest that in the Al-rich system the presence of Fe has no strong effect on the pressure required to synthesize the pure post-perovskite phase, but the two-phase perovskite and post-perovskite region may be broad and its width dependent on Fe content. Our results suggest that any regions highly enriched in Al2O3 may consist of either the perovskite phase or a mixture of perovskite and post-perovskite phases throughout the entire thickness of the D″ region. The observed synthesis pressures (>148GPa) for a pure post-perovskite phase are beyond that at the Earth's core-mantle boundary (~135GPa).
Original language | English (US) |
---|---|
Pages (from-to) | 422-428 |
Number of pages | 7 |
Journal | Earth and Planetary Science Letters |
Volume | 312 |
Issue number | 3-4 |
DOIs | |
State | Published - Dec 15 2011 |
All Science Journal Classification (ASJC) codes
- Geochemistry and Petrology
- Geophysics
- Space and Planetary Science
- Earth and Planetary Sciences (miscellaneous)
Keywords
- AlO
- D″ layer
- Iron content
- Low mantle
- Perovskite
- Post-perovskite