Synchrotron radiation induced surface photovoltage at metal/GaAs interfaces

D. Mao, Antoine Kahn, M. Marsi, G. Margaritondo

Research output: Contribution to journalArticle

2 Scopus citations

Abstract

We use the Kelvin method to study the synchrotron radiation induced surface photovoltage (SPV) on GaAs(110) as a function of metal coverage and temperature. We find that varying the temperature alone does not induced significant change in band bending in the semiconductor, but that the combination of low temperature and synchrotron light illumination on lightly doped n-GaAs induces a large and quasi-permanent SPV. On lightly doped n-GaAs, the low-temperature SPV (0.55 eV) is equal to the quasi-totality of the band bending at submonolayer coverage and discharges with a time constant of the order of hours. Above a monolayer, the rate of discharging increases dramatically, emphasizing the role of charge leakage through the overlayer. The room temperature SPV is considerably smaller (0.2 eV). Finally, no significant SPV is detected on highly doped GaAs. The impact of this synchrotron radiation induced SPV on the photoemission study of metal/semiconductor interfaces is discussed in detail.

Original languageEnglish (US)
Pages (from-to)324-331
Number of pages8
JournalApplied Surface Science
Volume48-49
Issue numberC
DOIs
StatePublished - Jan 1 1991

All Science Journal Classification (ASJC) codes

  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Synchrotron radiation induced surface photovoltage at metal/GaAs interfaces'. Together they form a unique fingerprint.

Cite this