TY - JOUR
T1 - Synchronous and stochastic patterns of gene activation in the drosophila embryo
AU - Boettiger, Alistair N.
AU - Levine, Michael
PY - 2009/7/24
Y1 - 2009/7/24
N2 - Drosophila embryogenesis is characterized by rapid transitions in gene activity, whereby crudely distributed gradients of regulatory proteins give way to precise on/off patterns of gene expression. To explore the underlying mechanisms, a partially automated, quantitative in situ hybridization method was used to visualize expression profiles of 14 developmental control genes in hundreds of embryos. These studies revealed two distinct patterns of gene activation: synchronous and stochastic. Synchronous genes display essentially uniform expression of nascent transcripts in all cells of an embryonic tissue, whereas stochastic genes display erratic patterns of de novo activation. RNA polymerase II is "pre-loaded" (stalled) in the promoter regions of synchronous genes, but not stochastic genes. Transcriptional synchrony might ensure the orderly deployment of the complex gene regulatory networks that control embryogenesis.
AB - Drosophila embryogenesis is characterized by rapid transitions in gene activity, whereby crudely distributed gradients of regulatory proteins give way to precise on/off patterns of gene expression. To explore the underlying mechanisms, a partially automated, quantitative in situ hybridization method was used to visualize expression profiles of 14 developmental control genes in hundreds of embryos. These studies revealed two distinct patterns of gene activation: synchronous and stochastic. Synchronous genes display essentially uniform expression of nascent transcripts in all cells of an embryonic tissue, whereas stochastic genes display erratic patterns of de novo activation. RNA polymerase II is "pre-loaded" (stalled) in the promoter regions of synchronous genes, but not stochastic genes. Transcriptional synchrony might ensure the orderly deployment of the complex gene regulatory networks that control embryogenesis.
UR - http://www.scopus.com/inward/record.url?scp=67749106610&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67749106610&partnerID=8YFLogxK
U2 - 10.1126/science.1173976
DO - 10.1126/science.1173976
M3 - Article
C2 - 19628867
AN - SCOPUS:67749106610
SN - 0036-8075
VL - 325
SP - 471
EP - 473
JO - Science
JF - Science
IS - 5939
ER -