Symmetrization of Thin Freestanding Liquid Films via a Capillary-Driven Flow

Vincent Bertin, John Niven, Howard A. Stone, Thomas Salez, Elie Raphaël, Kari Dalnoki-Veress

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

We present experiments to study the relaxation of a nanoscale cylindrical perturbation at one of the two interfaces of a thin viscous freestanding polymeric film. Driven by capillarity, the film flows and evolves toward equilibrium by first symmetrizing the perturbation between the two interfaces and eventually broadening the perturbation. A full-Stokes hydrodynamic model is presented, which accounts for both the vertical and lateral flows and which highlights the symmetry in the system. The symmetrization time is found to depend on the membrane thickness, surface tension, and viscosity.

Original languageEnglish (US)
Article number184502
JournalPhysical review letters
Volume124
Issue number18
DOIs
StatePublished - May 8 2020

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Symmetrization of Thin Freestanding Liquid Films via a Capillary-Driven Flow'. Together they form a unique fingerprint.

Cite this