Survivability of psychrobacter cryohalolentis K5 under simulated martian surface conditions

David J. Smith, Andrew C. Schuerger, Mark M. Davidson, Stephen Wilson Pacala, Corien Bakermans, Tullis C. Onstott

Research output: Contribution to journalArticlepeer-review

31 Scopus citations


Spacecraft launched to Mars can retain viable terrestrial microorganisms on board that may survive the interplanetary transit. Such biota might compromise the search for life beyond Earth if capable of propagating on Mars. The current study explored the survivability of Psychrobacter cryohalolentis K5, a psychrotolerant microorganism obtained from a Siberian permafrost cryopeg, under simulated martian surface conditions of high ultraviolet irradiation, high desiccation, low temperature, and low atmospheric pressure. First, a desiccation experiment compared the survival of P. cryohalolentis cells embedded, or not embedded, within a medium/salt matrix (MSM) maintained at 25°C for 24 h within a laminar flow hood. Results indicate that the presence of the MSM enhanced survival of the bacterial cells by 1 to 3 orders of magnitude. Second, tests were conducted in a Mars Simulation Chamber to determine the UV tolerance of the microorganism. No viable vegetative cells of P. cryohalolentis were detected after 8 h of exposure to Mars-normal conditions of 4.55 W/m 2 UVC irradiation (200-280 nm), -12.5°C, 7.1 mbar, and a Mars gas mix composed of CO 2 (95.3), N 2 (2.7), Ar (1.6), O 2 (0.2), and H 2O (0.03). Third, an experiment was conducted within the Mars chamber in which total atmospheric opacities were simulated at τ = 0.1 (dust-free CO 2 atmosphere at 7.1 mbar), 0.5 (normal clear sky with 0.4 = dust opacity and 0.1 = CO 2-only opacity), and 3.5 (global dust storm) to determine the survivability of P. cryohalolentis to partially shielded UVC radiation. The survivability of the bacterium increased with the level of UVC attenuation, though population levels still declined several orders of magnitude compared to UVC-absent controls over an 8 h exposure period. Astrobiology 9, 221-228.

Original languageEnglish (US)
Pages (from-to)221-228
Number of pages8
Issue number2
StatePublished - Mar 1 2009

All Science Journal Classification (ASJC) codes

  • Agricultural and Biological Sciences (miscellaneous)
  • Space and Planetary Science


  • Desiccation
  • Extremophile survivability
  • Psychrotolerance
  • Simulated martian conditions
  • UV irradiation


Dive into the research topics of 'Survivability of psychrobacter cryohalolentis K5 under simulated martian surface conditions'. Together they form a unique fingerprint.

Cite this