Abstract
Convolutional networks have achieved a great deal of success in high-level vision problems such as object recognition. Here we show that they can also be used as a general method for low-level image processing. As an example of our approach, convolutional networks are trained using gradient learning to solve the problem of restoring noisy or degraded images. For our training data, we have used electron microscopic images of neural circuitry with ground truth restorations provided by human experts. On this dataset, Markov random field (MRF), conditional random field (CRF), and anisotropic diffusion algorithms perform about the same as simple thresholding, but superior performance is obtained with a convolutional network containing over 34,000 adjustable parameters. When restored by this convolutional network, the images are clean enough to be used for segmentation, whereas the other approaches fail in this respect. We do not believe that convolutional networks are fundamentally superior to MRFs as a representation for image processing algorithms. On the contrary, the two approaches are closely related. But in practice, it is possible to train complex convolutional networks, while even simple MRF models are hindered by problems with Bayesian learning and inference procedures. Our results suggest that high model complexity is the single most important factor for good performance, and this is possible with convolutional networks.
Original language | English (US) |
---|---|
DOIs | |
State | Published - 2007 |
Externally published | Yes |
Event | 2007 IEEE 11th International Conference on Computer Vision, ICCV - Rio de Janeiro, Brazil Duration: Oct 14 2007 → Oct 21 2007 |
Other
Other | 2007 IEEE 11th International Conference on Computer Vision, ICCV |
---|---|
Country/Territory | Brazil |
City | Rio de Janeiro |
Period | 10/14/07 → 10/21/07 |
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition