Supervised dictionary learning

Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, Andrew Zisserman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

767 Scopus citations

Abstract

It is now well established that sparse signal models are well suited for restoration tasks and can be effectively learned from audio, image, and video data. Recent research has been aimed at learning discriminative sparse models instead of purely reconstructive ones. This paper proposes a new step in that direction, with a novel sparse representation for signals belonging to different classes in terms of a shared dictionary and discriminative class models. The linear version of the proposed model admits a simple probabilistic interpretation, while its most general variant admits an interpretation in terms of kernels. An optimization framework for learning all the components of the proposed model is presented, along with experimental results on standard handwritten digit and texture classification tasks.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference
PublisherNeural Information Processing Systems
Pages1033-1040
Number of pages8
ISBN (Print)9781605609492
StatePublished - 2009
Externally publishedYes
Event22nd Annual Conference on Neural Information Processing Systems, NIPS 2008 - Vancouver, BC, Canada
Duration: Dec 8 2008Dec 11 2008

Publication series

NameAdvances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference

Other

Other22nd Annual Conference on Neural Information Processing Systems, NIPS 2008
Country/TerritoryCanada
CityVancouver, BC
Period12/8/0812/11/08

All Science Journal Classification (ASJC) codes

  • Information Systems

Fingerprint

Dive into the research topics of 'Supervised dictionary learning'. Together they form a unique fingerprint.

Cite this