Superconductivity from On-Chip Metallization on 2D Topological Chalcogenides

Yanyu Jia, Guo Yu, Tiancheng Song, Fang Yuan, Ayelet J. Uzan, Yue Tang, Pengjie Wang, Ratnadwip Singha, Michael Onyszczak, Zhaoyi Joy Zheng, Kenji Watanabe, Takashi Taniguchi, Leslie M. Schoop, Sanfeng Wu

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) is a versatile class of quantum materials of interest to various fields including, e.g., nanoelectronics, optical devices, and topological and correlated quantum matter. Tailoring the electronic properties of TMDs is essential to their applications in many directions. Here, we report that a highly controllable and uniform on-chip 2D metallization process converts a class of atomically thin TMDs into robust superconductors, a property belonging to none of the starting materials. As examples, we demonstrate the introduction of superconductivity into a class of 2D air-sensitive topological TMDs, including monolayers of Td-WTe2, 1T′-MoTe2, and 2H-MoTe2, as well as their natural and twisted bilayers, metallized with an ultrathin layer of palladium. This class of TMDs is known to exhibit intriguing topological phases ranging from topological insulator, Weyl semimetal to fractional Chern insulator. The unique, high-quality two-dimensional metallization process is based on our recent findings of the long-distance, non-Fickian in-plane mass transport and chemistry in 2D that occur at relatively low temperatures and in devices fully encapsulated with inert insulating layers. Highly compatible with existing nanofabrication techniques for van der Waals stacks, our results offer a route to designing and engineering superconductivity and topological phases in a class of correlated 2D materials.

Original languageEnglish (US)
Article number021051
JournalPhysical Review X
Volume14
Issue number2
DOIs
StatePublished - Apr 2024

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Superconductivity from On-Chip Metallization on 2D Topological Chalcogenides'. Together they form a unique fingerprint.

Cite this