TY - GEN
T1 - Super-resolution texturing for online virtual globes
AU - Rother, Diego
AU - Williams, Lance
AU - Sapiro, Guillermo
PY - 2008
Y1 - 2008
N2 - Online virtual globe applications such as Google Earth and Maps, Microsoft Virtual Earth, and Yahoo! Maps, allow users to explore realistic models of the Earth. To provide the ground-level detail of interest to users, it is necessary to serve and render high resolution images. For planetary coverage at high resolution, a very large number of images need to be acquired, stored, and transmitted, with consequent high costs and difficulty for the application provider, often resulting in lower than expected performance. In this work we propose a supplementary approach to render appropriate visual information in these applications. Using super-resolution techniques based on the combination and extension of known texture transfer and synthesis algorithms, we develop a system to efficiently synthesize fine detail consistent with the textures served. This approach dramatically reduces the operational cost of virtual globe displays, which are among the most image-intensive applications on the Internet, while at the same time improving their appearance. The proposed framework is fast and preserves the coherence between corresponding images at different resolutions, allowing consistent and responsive interactive zooming and panning operations. The framework is capable of adapting a library of multiscale textures to pre-segmented regions in the highest-resolution texture maps available. We also describe a simple interface to obtain class label information from contributing users. The presentation of the constituent techniques is complemented with examples simulating our framework embedded in Google Earth.
AB - Online virtual globe applications such as Google Earth and Maps, Microsoft Virtual Earth, and Yahoo! Maps, allow users to explore realistic models of the Earth. To provide the ground-level detail of interest to users, it is necessary to serve and render high resolution images. For planetary coverage at high resolution, a very large number of images need to be acquired, stored, and transmitted, with consequent high costs and difficulty for the application provider, often resulting in lower than expected performance. In this work we propose a supplementary approach to render appropriate visual information in these applications. Using super-resolution techniques based on the combination and extension of known texture transfer and synthesis algorithms, we develop a system to efficiently synthesize fine detail consistent with the textures served. This approach dramatically reduces the operational cost of virtual globe displays, which are among the most image-intensive applications on the Internet, while at the same time improving their appearance. The proposed framework is fast and preserves the coherence between corresponding images at different resolutions, allowing consistent and responsive interactive zooming and panning operations. The framework is capable of adapting a library of multiscale textures to pre-segmented regions in the highest-resolution texture maps available. We also describe a simple interface to obtain class label information from contributing users. The presentation of the constituent techniques is complemented with examples simulating our framework embedded in Google Earth.
UR - http://www.scopus.com/inward/record.url?scp=51849100750&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=51849100750&partnerID=8YFLogxK
U2 - 10.1109/CVPRW.2008.4562961
DO - 10.1109/CVPRW.2008.4562961
M3 - Conference contribution
AN - SCOPUS:51849100750
SN - 9781424423408
T3 - 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops
BT - 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops
T2 - 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops
Y2 - 23 June 2008 through 28 June 2008
ER -