Sun-Heliosphere Observation-based Ionization Rates Model

Justyna M. Sokó, D. J. McComas, M. Bzowski, M. Tokumaru

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


The solar wind (SW) and the extreme ultraviolet (EUV) radiation modulate fluxes of interstellar and heliospheric particles inside the heliosphere both in time and in space. Understanding this modulation is necessary to correctly interpret measurements of particles of interstellar origin inside the heliosphere. We present a revision of heliospheric ionization rates and provide the Sun-Heliosphere Observation-based Ionization Rates model based on the currently available data. We calculate the total ionization rates using revised SW and solar EUV data. We study the in-ecliptic variation of the SW parameters, the latitudinal structure of the SW speed and density, and the reconstruction of the photoionization rates. The revision most affects the SW out of the ecliptic plane during solar maximum and the estimation of the photoionization rates, the latter due to a change of the reference data. The revised polar SW is slower and denser during the solar maximum of solar cycle (SC) 24. The current estimated total ionization rates are higher than the previous ones for H, O, and Ne, and lower for He. The changes for the in-ecliptic total ionization rates are less than 10% for H and He, up to 20% for O, and up to 35% for Ne. Additionally, the changes are not constant in time and vary as a function of time and latitude.

Original languageEnglish (US)
Article number179
JournalAstrophysical Journal
Issue number2
StatePublished - Jul 10 2020

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Sun-Heliosphere Observation-based Ionization Rates Model'. Together they form a unique fingerprint.

Cite this