TY - JOUR
T1 - Summertime state-level source-receptor relationships between nitrogen oxides emissions and surface ozone concentrations over the continental United States
AU - Tong, Daniel Q.
AU - Mauzerall, Denise Leonore
PY - 2008/11/1
Y1 - 2008/11/1
N2 - Interstate transport of ozone (O3) and its precursors can contribute substantially to state-level surface O3 concentrations, making it difficult for some states to meet the National Ambient Air Quality Standards (NAAQS) for O3 by limiting only their own emissions. We analyze the effect of interstate transport on surface O3 in each continental U.S. state in July 1996 using the community multiscale air quality (CMAQ) model. By examining the difference between a baseline simulation and perturbation simulations in which each state's nitrogen oxides (NOx) emissions are removed, we establish for the first time a summertime source-receptor matrix for all 48 continental states. We find that for 16 (20) states at least one neighboring state's NOx emissions are responsible for a larger increase in monthly mean peak 8 h (all-hour) O3 concentrations than the state's own emissions. For over 80% of the contiguous states, interstate transport is more important than local emissions for summertime peak O3 concentrations. Our source-receptor matrices indicate that the geographic range of the clean air interstate rule (CAIR) was sufficient to address interstate transport of O3 in most of the states included in the program. However, the exclusion of Texas, which has particularly large NOx emissions, from the CAIR O3 program left emission sources uncontrolled that contribute more than 1 ppbv to the July mean of peak 8 h O3 concentrations in over a dozen states.
AB - Interstate transport of ozone (O3) and its precursors can contribute substantially to state-level surface O3 concentrations, making it difficult for some states to meet the National Ambient Air Quality Standards (NAAQS) for O3 by limiting only their own emissions. We analyze the effect of interstate transport on surface O3 in each continental U.S. state in July 1996 using the community multiscale air quality (CMAQ) model. By examining the difference between a baseline simulation and perturbation simulations in which each state's nitrogen oxides (NOx) emissions are removed, we establish for the first time a summertime source-receptor matrix for all 48 continental states. We find that for 16 (20) states at least one neighboring state's NOx emissions are responsible for a larger increase in monthly mean peak 8 h (all-hour) O3 concentrations than the state's own emissions. For over 80% of the contiguous states, interstate transport is more important than local emissions for summertime peak O3 concentrations. Our source-receptor matrices indicate that the geographic range of the clean air interstate rule (CAIR) was sufficient to address interstate transport of O3 in most of the states included in the program. However, the exclusion of Texas, which has particularly large NOx emissions, from the CAIR O3 program left emission sources uncontrolled that contribute more than 1 ppbv to the July mean of peak 8 h O3 concentrations in over a dozen states.
UR - http://www.scopus.com/inward/record.url?scp=55349094308&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=55349094308&partnerID=8YFLogxK
U2 - 10.1021/es7027636
DO - 10.1021/es7027636
M3 - Article
C2 - 19031890
AN - SCOPUS:55349094308
SN - 0013-936X
VL - 42
SP - 7976
EP - 7984
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 21
ER -