Summary report of the 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis (FDPVA)

S. Gonzalez de Vicente, D. Mazon, M. Xu, S. Pinches, M. Churchill, A. Dinklage, R. Fischer, A. Murari, P. Rodriguez-Fernandez, J. Stillerman, J. Vega, G. Verdoolaege

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The objective of the Fourth Technical Meeting on Fusion Data Processing, Validation and Analysis was to provide a platform during which a set of topics relevant to fusion data processing, validation and analysis are discussed with the view of extrapolating needs to next step fusion devices such as ITER. The validation and analysis of experimental data obtained from diagnostics used to characterize fusion plasmas are crucial for a knowledge-based understanding of the physical processes governing the dynamics of these plasmas. This paper presents the recent progress and achievements in the domain of plasma diagnostics and synthetic diagnostics data analysis (including image processing, regression analysis, inverse problems, deep learning, machine learning, big data and physics-based models for control) reported at the meeting. The progress in these areas highlight trends observed in current major fusion confinement devices. A special focus is dedicated on data analysis requirements for ITER and DEMO with a particular attention paid to artificial intelligence for automatization and improving reliability of control processes.

Original languageEnglish (US)
Article number047001
JournalNuclear Fusion
Volume63
Issue number4
DOIs
StatePublished - Apr 2023

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Condensed Matter Physics

Keywords

  • Bayesian techniques
  • data validation
  • disruption predictors
  • image processing
  • integrated data analysis
  • machine learning
  • neural networks

Fingerprint

Dive into the research topics of 'Summary report of the 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis (FDPVA)'. Together they form a unique fingerprint.

Cite this