Successful Starshade petal deployment tolerance verification in support of NASA's technology development for exoplanet missions

D. Webb, N. Jeremy Kasdin, D. Lisman, S. Shaklan, M. Thomson, E. Cady, G. W. Marks, A. Lo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

A Starshade is a sunflower-shaped satellite with a large inner disk structure surrounded by petals. A Starshade flies in formation with a space-borne telescope, creating a deep shadow around the telescope over a broad spectral band to permit nearby exoplanets to be viewed. Removing extraneous starlight before it enters the observatory optics greatly loosens the tolerances on the telescope and instrument that comprise the optical system, but the nature of the Starshade dictates a large deployable structure capable of deploying to a very precise shape. These shape requirements break down into key mechanical requirements which include the rigid-body position and orientation of each of the petals that ring the periphery of the Starshade. To verify our capability to meet these requirements, we modified an existing flight-like Astromesh reflector, provided by Northrup Grumman, as the base ring to which the petals attach. The integrated system, including 4 of the 30 flight-like subscale petals, truss, connecting spokes and central hub, was deployed tens of times in a flight-like manner using a gravity compensation system. After each deployment, discrete points in prescribed locations covering the petals and truss were measured using a highly-accurate laser tracker system. These measurements were then compared against the mechanical requirements, and the as-measured data shows deployment accuracy well within our milestone requirements and resulting in a contrast ratio consistent with exoplanet detection and characterization.

Original languageEnglish (US)
Title of host publicationAdvances in Optical and Mechanical Technologies for Telescopes and Instrumentation
EditorsColin R. Cunningham, Ramon Navarro, Allison A. Barto
PublisherSPIE
ISBN (Electronic)9780819496195
DOIs
StatePublished - Jan 1 2014
EventAdvances in Optical and Mechanical Technologies for Telescopes and Instrumentation - Montreal, Canada
Duration: Jun 23 2014Jun 27 2014

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9151
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherAdvances in Optical and Mechanical Technologies for Telescopes and Instrumentation
CountryCanada
CityMontreal
Period6/23/146/27/14

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Keywords

  • Exoplanets
  • External occulters
  • High-contrast imaging
  • Occulters
  • Starshades
  • TDEM

Fingerprint Dive into the research topics of 'Successful Starshade petal deployment tolerance verification in support of NASA's technology development for exoplanet missions'. Together they form a unique fingerprint.

Cite this