Abstract
The EGFR/Erk pathway is triggered by extracellular ligand stimulation, leading to stimulus-dependent dynamics of pathway activity. Although mechanical properties of the microenvironment also affect Erk activity, their effects on Erk signaling dynamics are poorly understood. Here, we characterize how the stiffness of the underlying substratum affects Erk signaling dynamics in mammary epithelial cells. We find that soft microenvironments attenuate Erk signaling, both at steady state and in response to epidermal growth factor (EGF) stimulation. Optogenetic manipulation at multiple signaling nodes reveals that intracellular signal transmission is largely unaffected by substratum stiffness. Instead, we find that soft microenvironments decrease EGF receptor (EGFR) expression and alter the amount and spatial distribution of EGF binding at cell membranes. Our data demonstrate that the mechanical microenvironment tunes Erk signaling dynamics via receptor-ligand interactions, underscoring how multiple microenvironmental signals are jointly processed through a highly conserved pathway that regulates tissue development, homeostasis, and disease progression.
Original language | English (US) |
---|---|
Article number | 110181 |
Journal | Cell Reports |
Volume | 37 |
Issue number | 13 |
DOIs | |
State | Published - Dec 28 2021 |
All Science Journal Classification (ASJC) codes
- General Biochemistry, Genetics and Molecular Biology
Keywords
- MAP kinase
- morphodynamics
- receptor tyrosine kinase
- signaling dynamics
- tissue mechanics