Sub-10 nm imprint lithography and applications

Stephen Y. Chou, Peter R. Krauss, Wei Zhang, Lingjie Guo, Lei Zhuang

Research output: Contribution to journalArticlepeer-review

1106 Scopus citations

Abstract

New developments, further details, and applications of imprint lithography are presented. Arrays of 10 nm diameter and 40 nm period holes were imprinted not only in polymethylmethacrylate (PMMA) on silicon, but also in PMMA on gold substrates. The smallest hole diameter imprinted in PMMA is 6 nm. All the PMMA patterns were transferred to a metal using a liftoff. In addition, PMMA mesa's of a size from 45 nm to 50 μm were obtained in a single imprint. Moreover, imprint lithography was used to fabricate the silicon quantum dot, wire, and ring transistors, which showed the same behavior as those fabricated using electron (e)-beam lithography. Finally, imprint lithography was used to fabricate nanocompact disks with 10 nm features and 400 Gbits/in.2 data density - near three orders of magnitude higher than current critical dimensions (CDs). A silicon scanning probe was used to read back the data successfully. The study of wear indicates that due to the ultrasmall force in tapping mode, both the nano-CD and the scanning probe will not show noticeable wear after a large number of scans.

Original languageEnglish (US)
Pages (from-to)2897-2904
Number of pages8
JournalJournal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
Volume15
Issue number6
DOIs
StatePublished - 1997

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Sub-10 nm imprint lithography and applications'. Together they form a unique fingerprint.

Cite this