Abstract
The results from guide field studies on the Magnetic Reconnection Experiment (MRX) are compared with results from Hall magnetohydrodynamic (HMHD) reconnection simulation with guide field. The quadrupole field, a signature of two-fluid reconnection at zero guide field, is modified by the presence of a finite guide field in a manner consistent with HMHD simulation. The modified Hall current profile contains reduced electron flows in the reconnection plane, which quantitatively explains the observed reduction of the reconnection rate. The present results are consistent with the hypothesis that the local reconnection dynamics is dominated by Hall effects in the collisionless regime of the MRX plasmas. While very good agreement is seen between experiment and simulations, we note that an important global feature of the experiments, a compression of the guide field by the reconnecting plasma, is not represented in the simulations.
Original language | English (US) |
---|---|
Article number | 055705 |
Journal | Physics of Plasmas |
Volume | 20 |
Issue number | 5 |
DOIs | |
State | Published - May 2013 |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics