Studies on the liftoff properties of dimethyl ether jet diffusion flames

Yuan Xue, Yiguang Ju

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The liftoff properties of the dimethyl ether (DME) jet diffusion flame were investigated experimentally and analytically with emphasis on the influences of flame stretch and fuel oxygen. The present experiments showed that the DME jet diffusion flame exhibited a distinct liftoff phenomenon that differed from other hydrocarbon fuels. This unique phenomenon was analyzed theoretically by taking into consideration the effects of flame stretch and the fuel oxygen. The results showed that the stretch effect had a significant impact on the critical liftoff Schmidt number and the flame liftoff height. Based on these observations, a new criterion for the lifted flame at the blowout limit was proposed. The results also demonstrated that the appearance of fuel oxygen in DME increases the fuel mixture fraction at the stoichiometric condition and changes the flame liftoff phenomenon. The effect of fuel oxygen was further investigated by adding air into propane and n-butane diffusion flames. It was found that with the increase of oxygen addition, both propane and n-butane flames change from the direct liftoff regime to the direct blowout regime. The results well described the unique liftoff phenomenon of DME and also applicable to other oxygenated and air diluted hydrocarbon fuels.

Original languageEnglish (US)
Title of host publicationCollection of Technical Papers - 44th AIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
Pages14137-14144
Number of pages8
ISBN (Print)1563478072, 9781563478079
DOIs
StatePublished - 2006
Event44th AIAA Aerospace Sciences Meeting 2006 - Reno, NV, United States
Duration: Jan 9 2006Jan 12 2006

Publication series

NameCollection of Technical Papers - 44th AIAA Aerospace Sciences Meeting
Volume19

Other

Other44th AIAA Aerospace Sciences Meeting 2006
Country/TerritoryUnited States
CityReno, NV
Period1/9/061/12/06

All Science Journal Classification (ASJC) codes

  • Space and Planetary Science
  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Studies on the liftoff properties of dimethyl ether jet diffusion flames'. Together they form a unique fingerprint.

Cite this