Structure and evolution of flash flood producing storms in a small urban watershed

Long Yang, James A. Smith, Mary Lynn Baeck, Brianne Smith, Fuqiang Tian, Dev Niyogi

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


The objective of this study is to examine the structure and evolution of storms that produce flash floods in “small” urban watersheds. The study site is Harry’s Brook, a 1.1 km2 urban watershed in Princeton, New Jersey. A catalog of 15 storms is developed for Harry’s Brook based on paired observations of streamflow and rainfall. Lagrangian analyses of storm properties are based on storm tracking procedures utilizing 3-D radar reflectivity observations from the KDIX (Fort Dix, New Jersey) Weather Surveillance Radar, 1988 Doppler. Analyses focus on the storm elements that were responsible for the peak rainfall rates over the watershed. The 22 July 2006 storm, which produced the record flood peak in the catalog (a unit discharge of 26.8m3 s-1 km-2) was characterized by thunderstorm cells that produced more than 50 cloud-to-ground lightning strikes and “collapsed” over Harry’s Brook. The 3 June 2006 storm, which produced the third largest flood peak (a unit discharge of 11.1m3 s-1 km-2), was a “low-echo centroid” storm with no lightning. We use cloud-to-ground flash rate, echo top height, maximum reflectivity, and height of maximum reflectivity as key variables for characterizing convective intensity. Storm motion is examined through a time series of storm speed and direction. The 22 July 2006 and 3 June 2006 storms provide end-members of storm properties, centering on “convective intensity," which are associated with flash flooding in small urban watersheds. Extreme 1-15 min rainfall rates are produced by warm season convective systems at both ends of the convective intensity spectrum.

Original languageEnglish (US)
Pages (from-to)3139-3152
Number of pages14
JournalJournal of Geophysical Research
Issue number7
StatePublished - 2016

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Physical and Theoretical Chemistry
  • Polymers and Plastics
  • Materials Chemistry


Dive into the research topics of 'Structure and evolution of flash flood producing storms in a small urban watershed'. Together they form a unique fingerprint.

Cite this