Structural variation analysis with strobe reads

Anna Ritz, Ali Bashir, Benjamin J. Raphael

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Motivation: Structural variation including deletions, duplications and rearrangements of DNA sequence are an important contributor to genome variation in many organisms. In human, many structural variants are found in complex and highly repetitive regions of the genome making their identification difficult. A new sequencing technology called strobe sequencing generates strobe reads containing multiple subreads from a single contiguous fragment of DNA. Strobe reads thus generalize the concept of paired reads, or mate pairs, that have been routinely used for structural variant detection. Strobe sequencing holds promise for unraveling complex variants that have been difficult to characterize with current sequencing technologies. Results: We introduce an algorithm for identification of structural variants using strobe sequencing data. We consider strobe reads from a test genome that have multiple possible alignments to a reference genome due to sequencing errors and/or repetitive sequences in the reference. We formulate the combinatorial optimization problem of finding the minimum number of structural variants in the test genome that are consistent with these alignments. We solve this problem using an integer linear program. Using simulated strobe sequencing data, we show that our algorithm has better sensitivity and specificity than paired read approaches for structural variation identification. Contact: [email protected].

Original languageEnglish (US)
Article numberbtq153
Pages (from-to)1291-1298
Number of pages8
JournalBioinformatics
Volume26
Issue number10
DOIs
StatePublished - Apr 8 2010
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Computational Mathematics
  • Molecular Biology
  • Biochemistry
  • Statistics and Probability
  • Computer Science Applications
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Structural variation analysis with strobe reads'. Together they form a unique fingerprint.

Cite this