TY - JOUR
T1 - Structural, transport, thermodynamic, and neutron diffraction studies of layered R2O3Fe2Se2 (R=Ce, Pr, Nd, and Sm)
AU - Ni, N.
AU - Jia, S.
AU - Huang, Q.
AU - Climent-Pascual, E.
AU - Cava, R. J.
PY - 2011/6/17
Y1 - 2011/6/17
N2 - We report the structural, transport, and thermodynamic properties of the semiconducting, layered rare-earth iron oxyselenides R2O 3Fe2Se2 (R=Ce, Pr, Nd, and Sm), which have crystal structures related to the arsenide superconductors except with in-plane oxygens within the Fe square planes. The activation energies are estimated to be between 0.15 and 0.26 eV for these four compounds. The antiferromagnetic Fe sublattice ordering, which appears as an anomaly in the magnetic susceptibility and a sharp peak in the heat capacity, occurs at 87.2, 88.6, 87.7, and 85.3 K, for the Ce to Sm variants, respectively, and the structural analysis suggests a possible correlation between TN-Fe and the Fe-Se distance, rather than the in-plane Fe-O distance. The R sublattice orders antiferromagnetically at 21.8 K for the Pr variant and 5.8 K for the Sm variant; no R sublattice ordering is observed above 2 K for R=Ce and Nd. The existence of short-range spin correlations above the Fe sublattice ordering temperature is revealed by magnetic entropy analysis, which also suggests that the ordered magnetic states of the R sublattice arise from triply degenerate crystal-electric-field (CEF) states for Pr and doubly degenerate CEF states for Sm. The neutron-scattering measurements performed on Pr2O3Fe2Se 2 reveals that the ordered Fe sublattice has the same magnetic structure as the one in La2O3Fe2Se2, with a propagation vector of k=(0.5,0,0.5) and an ordered magnetic moment of 2.23(3)μB/Fe at 5 K.
AB - We report the structural, transport, and thermodynamic properties of the semiconducting, layered rare-earth iron oxyselenides R2O 3Fe2Se2 (R=Ce, Pr, Nd, and Sm), which have crystal structures related to the arsenide superconductors except with in-plane oxygens within the Fe square planes. The activation energies are estimated to be between 0.15 and 0.26 eV for these four compounds. The antiferromagnetic Fe sublattice ordering, which appears as an anomaly in the magnetic susceptibility and a sharp peak in the heat capacity, occurs at 87.2, 88.6, 87.7, and 85.3 K, for the Ce to Sm variants, respectively, and the structural analysis suggests a possible correlation between TN-Fe and the Fe-Se distance, rather than the in-plane Fe-O distance. The R sublattice orders antiferromagnetically at 21.8 K for the Pr variant and 5.8 K for the Sm variant; no R sublattice ordering is observed above 2 K for R=Ce and Nd. The existence of short-range spin correlations above the Fe sublattice ordering temperature is revealed by magnetic entropy analysis, which also suggests that the ordered magnetic states of the R sublattice arise from triply degenerate crystal-electric-field (CEF) states for Pr and doubly degenerate CEF states for Sm. The neutron-scattering measurements performed on Pr2O3Fe2Se 2 reveals that the ordered Fe sublattice has the same magnetic structure as the one in La2O3Fe2Se2, with a propagation vector of k=(0.5,0,0.5) and an ordered magnetic moment of 2.23(3)μB/Fe at 5 K.
UR - http://www.scopus.com/inward/record.url?scp=79961140212&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79961140212&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.83.224403
DO - 10.1103/PhysRevB.83.224403
M3 - Article
AN - SCOPUS:79961140212
SN - 1098-0121
VL - 83
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 22
M1 - 224403
ER -