Structural transitions of solvent-free oligomer-grafted nanoparticles

Alexandros Chremos, Athanassios Z. Panagiotopoulos

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Novel structural transitions of solvent-free oligomer-grafted nanoparticles are investigated by using molecular dynamics simulations of a coarse-grained bead-spring model. Variations in core size and grafting density lead to self-assembly of the nanoparticles into a variety of distinct structures. At the boundaries between different structures, the nanoparticle systems undergo thermoreversible transitions. This structural behavior, which has not been previously reported, deviates significantly from that of simple liquids. The reversible nature of these transitions in solvent-free conditions offers new ways to control self-assembly of nanoparticles at experimentally accessible conditions.

Original languageEnglish (US)
Article number105503
JournalPhysical review letters
Volume107
Issue number10
DOIs
StatePublished - Sep 1 2011

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Structural transitions of solvent-free oligomer-grafted nanoparticles'. Together they form a unique fingerprint.

Cite this