TY - JOUR
T1 - Structural and functional analysis of SAM-dependent N-methyltransferases involved in ovoselenol and ovothiol biosynthesis
AU - Ireland, Kendra A.
AU - Kayrouz, Chase M.
AU - Abbott, Marissa L.
AU - Seyedsayamdost, Mohammad R.
AU - Davis, Katherine M.
N1 - Publisher Copyright:
© 2024 Elsevier Inc.
PY - 2025/3/6
Y1 - 2025/3/6
N2 - Thio/selenoimidazole Nπ-methyltransferases are an emerging family of enzymes catalyzing the final step in the production of the S/Se-containing histidine-derived antioxidants ovothiol and ovoselenol. These enzymes, prevalent in prokaryotes, show minimal sequence similarity to other methyltransferases, and the structural determinants of their reactivities remain poorly understood. Herein, we report ligand-bound crystal structures of OvsM from the ovoselenol pathway as well as a member of a previously unknown clade of standalone ovothiol-biosynthetic Nπ-methyltransferases, which we have designated OvoM. Unlike previously reported ovothiol methyltransferases, which are fused as a C-terminal domain to the sulfoxide synthase OvoA, OvoMs function independently. Comparative structural analyses reveal conserved, ligand-induced conformational changes, suggesting similar behavior in dual-domain OvoA enzymes. Mutagenesis supports a model where OvoA domain rearrangement facilitates substrate recognition via a critical Tyr residue in the domain linker. Biochemical studies identify an essential active-site Asp, likely serving as a catalytic base in the SN2-like nucleophilic substitution reaction.
AB - Thio/selenoimidazole Nπ-methyltransferases are an emerging family of enzymes catalyzing the final step in the production of the S/Se-containing histidine-derived antioxidants ovothiol and ovoselenol. These enzymes, prevalent in prokaryotes, show minimal sequence similarity to other methyltransferases, and the structural determinants of their reactivities remain poorly understood. Herein, we report ligand-bound crystal structures of OvsM from the ovoselenol pathway as well as a member of a previously unknown clade of standalone ovothiol-biosynthetic Nπ-methyltransferases, which we have designated OvoM. Unlike previously reported ovothiol methyltransferases, which are fused as a C-terminal domain to the sulfoxide synthase OvoA, OvoMs function independently. Comparative structural analyses reveal conserved, ligand-induced conformational changes, suggesting similar behavior in dual-domain OvoA enzymes. Mutagenesis supports a model where OvoA domain rearrangement facilitates substrate recognition via a critical Tyr residue in the domain linker. Biochemical studies identify an essential active-site Asp, likely serving as a catalytic base in the SN2-like nucleophilic substitution reaction.
KW - SAM-dependent methyltransferase
KW - X-ray crystallography
KW - biosynthesis
KW - conformational dynamics
KW - crystal structure
KW - differential scanning calorimetry
KW - nucleophilic substitution
KW - ovoselenol
KW - ovothiol
KW - thio/selenoimidazole
UR - http://www.scopus.com/inward/record.url?scp=85217252515&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85217252515&partnerID=8YFLogxK
U2 - 10.1016/j.str.2024.12.020
DO - 10.1016/j.str.2024.12.020
M3 - Article
C2 - 39862859
AN - SCOPUS:85217252515
SN - 0969-2126
VL - 33
SP - 528-538.e5
JO - Structure
JF - Structure
IS - 3
ER -