TY - JOUR
T1 - Stress-dependent elasticity and wave propagation - New insights and connections
AU - Sripanich, Yanadet
AU - Vasconcelos, Ivan
AU - Tromp, Jeroen
AU - Trampert, Jeannot
N1 - Publisher Copyright:
© 2021 The Authors.
PY - 2021/7/1
Y1 - 2021/7/1
N2 - To establish a consistent framework for seismic wave propagation that accommodates the effects of stress changes, it is critical to take into account the different definitions of stress and their corresponding effects on seismic quantities (e.g., wave speeds) as dictated by continuum mechanics. Revisiting this fundamental theoretical foundation, we first emphasize the role of stress within various forms of the wave equation resulting from different choices of stress definitions. Subsequently, using this basis, we investigate connections among existing theories that describe the variation of elastic moduli as a function of changes in stress. We find that there is a direct connection between predicting stress-induced elastic changes with the well-known third-order elasticity tensor and the recently proposed adiabatic pressure derivatives of elastic moduli. However, each of these approaches has different merits and drawbacks in terms of experimental validation as well as in their use. In addition, we investigate the connection with another general approach that relies on micromechanical structures (e.g., cracks and pores). Although this can be done algebraically, it remains unclear as to which definition of stress and which corresponding constitutive relationship should be considered in practical scenarios. We support our analysis with validations using previously published benchmark experimental data.
AB - To establish a consistent framework for seismic wave propagation that accommodates the effects of stress changes, it is critical to take into account the different definitions of stress and their corresponding effects on seismic quantities (e.g., wave speeds) as dictated by continuum mechanics. Revisiting this fundamental theoretical foundation, we first emphasize the role of stress within various forms of the wave equation resulting from different choices of stress definitions. Subsequently, using this basis, we investigate connections among existing theories that describe the variation of elastic moduli as a function of changes in stress. We find that there is a direct connection between predicting stress-induced elastic changes with the well-known third-order elasticity tensor and the recently proposed adiabatic pressure derivatives of elastic moduli. However, each of these approaches has different merits and drawbacks in terms of experimental validation as well as in their use. In addition, we investigate the connection with another general approach that relies on micromechanical structures (e.g., cracks and pores). Although this can be done algebraically, it remains unclear as to which definition of stress and which corresponding constitutive relationship should be considered in practical scenarios. We support our analysis with validations using previously published benchmark experimental data.
UR - http://www.scopus.com/inward/record.url?scp=85122588613&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85122588613&partnerID=8YFLogxK
U2 - 10.1190/geo2020-0252.1
DO - 10.1190/geo2020-0252.1
M3 - Article
AN - SCOPUS:85122588613
SN - 0016-8033
VL - 86
SP - W47-W64
JO - Geophysics
JF - Geophysics
IS - 4
ER -