Streaming Zero-Knowledge Proofs

Graham Cormode, Marcel Dall’Agnol, Tom Gur, Chris Hickey

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Streaming interactive proofs (SIPs) enable a space-bounded algorithm with one-pass access to a massive stream of data to verify a computation that requires large space, by communicating with a powerful but untrusted prover. This work initiates the study of zero-knowledge proofs for data streams. We define the notion of zero-knowledge in the streaming setting and construct zero-knowledge SIPs for the two main algorithmic building blocks in the streaming interactive proofs literature: the sumcheck and polynomial evaluation protocols. To the best of our knowledge all known streaming interactive proofs are based on either of these tools, and indeed, this allows us to obtain zero-knowledge SIPs for central streaming problems such as index, point and range queries, median, frequency moments, and inner product. Our protocols are efficient in terms of time and space, as well as communication: the verifier algorithm’s space complexity is polylog(n) and, after a non-interactive setup that uses a random string of near-linear length, the remaining parameters are no(1). En route, we develop an algorithmic toolkit for designing zero-knowledge data stream protocols, consisting of an algebraic streaming commitment protocol and a temporal commitment protocol. Our analyses rely on delicate algebraic and information-theoretic arguments and reductions from average-case communication complexity.

Original languageEnglish (US)
Title of host publication39th Computational Complexity Conference, CCC 2024
EditorsRahul Santhanam
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959773317
DOIs
StatePublished - Jul 2024
Event39th Computational Complexity Conference, CCC 2024 - Ann Arbor, United States
Duration: Jul 22 2024Jul 25 2024

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume300
ISSN (Print)1868-8969

Conference

Conference39th Computational Complexity Conference, CCC 2024
Country/TerritoryUnited States
CityAnn Arbor
Period7/22/247/25/24

All Science Journal Classification (ASJC) codes

  • Software

Keywords

  • computational complexity
  • streaming algorithms
  • Zero-knowledge proofs

Fingerprint

Dive into the research topics of 'Streaming Zero-Knowledge Proofs'. Together they form a unique fingerprint.

Cite this