Stratospheric sudden warmings in an idealized GCM

M. Jucker, Stephan Andreas Fueglistaler, G. K. Vallis

Research output: Contribution to journalArticle

9 Scopus citations

Abstract

An idealized general circulation model (GCM) with an analytically described Newtonian cooling term is employed to study the occurrence rate of sudden stratospheric warmings (SSWs) over a wide range of parameters. In particular, the sensitivity of the SSW occurrence rates to orographic forcing and both relaxation temperature and damping rate is evaluated. The stronger the orographic forcing and the weaker the radiative forcing (in both temperature and damping rate), the higher the SSW frequency. The separate effects of the damping rates at low and high latitudes are somewhat more complex. Generally, lower damping rates result in higher SSW frequency. However, if the low- and high-latitude damping rates are not the same, SSW frequency tends to be most sensitive to a fractional change in the lower of the two damping rates. In addition, the effect of the damping rates on the stratospheric residual circulation is investigated. It is found that higher high-latitude damping rate results in deeper but narrower circulation, whereas higher low-latitude damping rates cause strengthening of the stream function in the tropical midstratosphere to upper stratosphere. Finally, the relation between easily measured and compared climatological fields and the SSW occurrence rate is determined. The average stratospheric polar zonal mean zonal wind shows a strong anticorrelation with the SSW frequency. In the troposphere, there is a high correlation between the meridional temperature gradient and SSW frequency, suggesting that the strength of synoptic activity in the troposphere may be an important influence on SSW occurrence.

Original languageEnglish (US)
Pages (from-to)11,054-11,064
JournalJournal of Geophysical Research
Volume119
Issue number19
DOIs
StatePublished - Oct 16 2014

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'Stratospheric sudden warmings in an idealized GCM'. Together they form a unique fingerprint.

  • Cite this