Strain-induced darkening of trapped excitons in coupled quantum wells at low temperature

N. W. Sinclair, J. K. Wuenschell, Z. Vörös, B. Nelsen, D. W. Snoke, M. H. Szymanska, A. Chin, J. Keeling, L. N. Pfeiffer, K. W. West

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

In GaAs/AlGaAs coupled quantum wells, strain-induced traps may be used to confine excitons in in-plane, harmonic traps. Using these traps, we have pursued Bose-Einstein condensation (BEC) of long-lived, spatially indirect excitons. Here, we report a remarkable transition of the indirect exciton luminescence pattern with increasing strain, increasing exciton density, and decreasing temperature, to a spatial pattern exhibiting a large dark spot at the trap center, where we expect the exciton density to be maximum. The mechanism of particle loss is ruled out as an explanation for this dark spot. While the onset criteria are approximately consistent with the conditions for BEC of a weakly interacting gas, the conspicuous proximity in energy of the indirect light-hole states suggests that an explanation employing the single-particle physics of light-hole-heavy-hole mixing may explain the phenomenon. The effect of the strain is modeled, and the resulting landscape of indirect exciton spin states is discussed. The relative oscillator strengths of these states are predicted by an exact numerical solution of the two-particle Schrödinger equation for electrons and holes in coupled quantum wells and an electric field. The contrast in oscillator strengths is sufficient to produce this luminescence pattern, but this analysis suggests a strongly diminished lifetime as stress is increased. The opposite lifetime dependence is observed experimentally. Additionally, the temperature dependence eludes explanation by this mechanism.

Original languageEnglish (US)
Article number245304
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume83
Issue number24
DOIs
StatePublished - Jun 9 2011
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Strain-induced darkening of trapped excitons in coupled quantum wells at low temperature'. Together they form a unique fingerprint.

Cite this