Stimulus response coupling in bacterial chemotaxis: Receptor dimers in signalling arrays

Mikhail N. Levit, Yi Liu, Jeffry B. Stock

Research output: Contribution to journalReview articlepeer-review

64 Scopus citations


In the Escherichia coli chemotaxis system, a family of chemoreceptors in the cytoplasmic membrane binds stimulatory ligands and regulates the activity of an associated histidine kinase CheA to modulate swimming behaviour and thereby cause a net migration towards attractants and away from repellents. The chemoreceptors themselves have been shown to be predominantly dimeric, but in the presence of the kinase CheA plus an adapter protein, CheW, much higher order structures have been observed. Recent results indicate that transmembrane signalling occurs within receptor clusters rather than through isolated dimers. We propose that the mechanism involves receptor arrays where binding of ligands at the outside surface of the membrane affects lateral packing interactions that cause perturbations in the organization of the signalling array at the opposing surface of the membrane. Results with receptor chimeras as well as findings with tyrosine kinase receptors suggest that this mechanism may represent a common theme in membrane receptor function.

Original languageEnglish (US)
Pages (from-to)459-466
Number of pages8
JournalMolecular Microbiology
Issue number3
StatePublished - 1998

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Microbiology


Dive into the research topics of 'Stimulus response coupling in bacterial chemotaxis: Receptor dimers in signalling arrays'. Together they form a unique fingerprint.

Cite this